Изготовление соленоида (электромагнитный возвратно-поступательный механизм). Расчет обмоток электромагнитов Расчет усилия стержня в соленоиде

Расчет электромагнитного привода постоянного тока с втяжным якорем 1. Конструкция привода
Конструкция электромагнитного привода (ЭМП) постоянного тока с втяжным якорем показана на рис. 1.1.


Рис. 1.1. Конструкция ЭМП постоянного тока с втяжным якорем.
ЭМП состоит из цилиндрического стального корпуса, в который помещается токопроводящая (обычно медная) обмотка, представляющая собой цилиндрический соленоид. С обоих сторон корпус закрывается стальными крышками. На одну из крышек устанавливается стальная вставка. В отверстие другой крышки вставляется стальной якорь. Между якорем и сердечником должен оставаться рабочий зазор. Величина рабочего зазора определяет максимальный ход якоря. При пропускании электрического тока через обмотку якорь создает тяговое усилие, стремясь втянуться внутрь обмотки. Для возврата якоря в исходное положение при отключении тока может использоваться пружина (на чертеже не показана).
2. Постановка задачи
Необходимо рассчитать зависимость максимального тягового усилия ЭМП от хода якоря. На рис. 2.1 показан чертеж ЭМП с обозначением размеров.



Рис. 2.1. Чертеж ЭМП.
Принятые обозначения:
R0 - радиус вставки (якоря);
H0 - высота вставки;
R1 - внутренний радиус соленоида;
R2 - внешний радиус соленоида (внутренний радиус корпуса привода);
H - высота соленоида;
l - фактор упаковки;
j - плотность тока в обмотке;
Rd - внешний радиус корпуса привода;
Hd - высота корпуса привода;
Z - рабочий зазор;
X - перемещение якоря от начального положения;
U - напряжение питания привода;
I - величина тока в проводе обмотки;
F - усилие, развиваемое якорем привода.

3. Расчет допустимой плотности тока в обмотках
От плотности тока в обмотке зависит мощность тепловыделения и, соответственно, температура обмотки. Эта температура не должна превышать допустимой для данной марки провода. Расчет температуры внутри обмотки и, соответственно, допустимой плотности тока в обмотках можно произвести методом конечных элементов . Величина допустимой плотности тока в проводах обмоток зависит от конструкции ЭМП и для соленоидов с толщиной обмотки (R2 - R1) до 20 - 30 мм может достигать 5 ... 8 А/мм2 при длительной работе в воздушной среде температурой до 40 0C.
Если фактор упаковки принять равным 0.6, то при плотности тока в обмоточном проводе 5 А/мм2 плотность тока в самой обмотке составит 5 * 0.6 = 3 А/мм2. При этом превышение температуры обмотки над температурой окружающей среды будет не более 60 0C, а теплостойкость изоляции обмоточного провода должна быть примерно 100 0C.
Если плотность тока в проводе обмотки достигает 7.5 А/мм2 (плотность тока в обмоточном проводе 7.5 А/мм2, плотность тока в самой обмотке 4.5 А/мм2), то превышение максимальной температуры обмотки над температурой окружающей среды при длительной работе будет не более 120 0C. При намотке необходимо использовать провод с изоляцией соответствующей теплостойкости.
4. Расчет максимального тягового усилия ЭМП
Расчет распределения магнитного поля и возникающих при этом усилий можно произвести методом конечных элементов .Распределение магнитного поля в ЭМП показано на рис. 4.1.



Рис. 4.1. Распределение магнитного поля в ЭМП.
5. Расчет обмотки ЭМП
Обмотка ЭМП представляет собой цилиндрический соленоид. Его расчет может быть выполнен разными способами, например, с помощью программы Coil . При заданных размерах соленоида и для заданного напряжения источника питания необходимо подобрать такой диаметр обмоточного медного провода, чтобы плотность тока в самом проводе была как можно ближе к полученному при расчете максимально допустимой плотности тока значению (например, 5 А/мм2).
6. Примеры расчета
Пример 1. Параметры ЭМП:
R0 = 5 мм
H0 = 5 мм
R1 = 6 мм
R2 = 15 мм
H = 40 мм
l = 0.6
j = 3 А/мм2
Rd = 20 мм
Hd = 50 мм
U = 12 В

Зазор Z, мм 10 9 8 7 6 5 4 3 2 1 Ход X, мм 0 1 2 3 4 5 6 7 8 9 Усилие F, Н 1.71 1.84 2.02 2.25 2.57 3.00 3.72 5.18 7.86 16.60



Рис. 6.1. Зависимость усилия, развиваемого ЭМП, от хода якоря.
При питании ЭМП от источника напряжением 12 вольт обмотку следует намотать медным проводом диаметром (без изоляции) 0.27 мм. Если фактор упаковки равен 0.6, то число витков будет равно 3770, сопротивление - 73 Ом, индуктивность - 92 мГн. Потребляемый ток от источника с выходным напряжением 12 В составит 0.17 А, рассеиваемая мощность около 2 Вт.
Пример 2. Параметры ЭМП:
R0 = 5 мм
H0 = 5 мм
R1 = 6 мм
R2 = 13 мм
H = 36 мм
l = 0.6
j = 3 А/мм2 или 4.5 А/мм2
Rd = 15 мм
Hd = 40 мм
U = 24 В

Зазор Z, мм 5 4 3 2 1 Ход X, мм 0 1 2 3 4 Усилие F, Н для плотности тока 3 А/мм2 1.44 1.79 2.47 4.10 10.23 Усилие F, Н для плотности тока 4.5 А/мм2 3.16 3.88 5.27 8.38 17.22



Рис. 6.2. Зависимость усилия, развиваемого ЭМП, от хода якоря.
При питании ЭМП от источника напряжением 24 вольта при допустимой плотности тока в обмотке 3 А/мм2 обмотку следует намотать медным проводом диаметром (без изоляции) 0.16 мм. Если фактор упаковки равен 0.6, то число витков будет равно 7520, сопротивление - 373 Ом, индуктивность - 345 мГн. Потребляемый ток от источника с выходным напряжением 24 В составит 0.064 А, рассеиваемая мощность около 1.5 Вт.
При питании ЭМП от источника напряжением 24 вольта при допустимой плотности тока в обмотке 4.5 А/мм2 обмотку следует намотать медным проводом диаметром (без изоляции) 0.24 мм. Если фактор упаковки равен 0.6, то число витков будет равно 3340, сопротивление - 74 Ом, индуктивность - 68 мГн. Потребляемый ток от источника с выходным напряжением 24 В составит 0.33 А, рассеиваемая мощность около 8 Вт.
Если есть запас по развиваемому усилию, то можно соответственно уменьшить напряжение питания, при этом облегчится тепловой режим работы обмотки привода.
По вопросам расчета конкретных конструкций ЭМП обращайтесь к автору (см. раздел Контактная информация ).
Ссылки:
  1. Coil: Программа для расчета параметров и магнитного поля цилиндрического соленоида
  2. Бреббия К. и др. Методы граничных элементов: Пер. с англ. / Бреббия К., Теллес Ж., Вроубел Л. - М.: Мир, 1987. - 524 с., ил.
  3. Громадка II Т., Лей Ч. Комплексный метод граничных элементов в инженерных задачах: Пер. с англ. - М.: Мир, 1990. - 303 с., ил.
  4. Казаков Л. А. Электромагнитные устройства РЭА: Справочник. - М.: Радио и связь, 1991. - 352 с.: ил.
  5. Норри Д., Фриз Ж. Введение в метод конечных элементов: Пер. с англ. - М.: Мир, 1981. - 304 с., ил.
  6. Сильвестер П., Феррари Р. Метод конечных элементов для радиоинженеров и инженеров-электриков: Пер. с англ. - М.: Мир, 1986. - 229 с., ил.
Словарь терминов:
  • Привод - устройство, имеющее рабочий орган, способный к механическому перемещению при наличии противодействующей силы.
  • Фактор упаковки (коэффициент заполнения) - отношение объема проводника к объему обмотки; при равномерной намотке равен отношению суммарной площади проводников в поперечном сечении обмотки (без учета изоляции) к площади поперечного сечения обмотки.
  • Цилиндрический соленоид - соленоид в виде цилиндра с центральным цилиндрическим отверстием (если таковое имеется).
  • Электромагнитный привод - привод на основе электромагнита.

В результате расчета магнитной цепи определяется не­обходимая МДС обмотки. Обмотка должна быть рассчитана таким образом, чтобы, с одной стороны, обеспечить требуе­мую МДС, а с другой - чтобы ее максимальная темпера­тура не превышала допустимой для используемого класса изоляции.

В зависимости от способа включения различают обмот­ки напряжения и обмотки тока. В первом случае напряже­ние, приложенное к обмотке, постоянно по своему действу­ющему значению, во втором сопротивление обмотки электромагнита намного меньше сопротивления остальной части цепи, которым и определяется неизменное значение тока.

Расчет обмотки электромагнита постоянного тока .

На рис. 4.8 показаны магнитопровод и катушка электро­магнита. Обмотка 1 катушки выполняется изолированным проводом, который наматывается на каркас 2.

Катушки могут быть и бескаркасными. В этом случае витки обмотки скрепляются ленточной или листовой изоляцией либо заливочным компаундом.

Для расчета обмотки напряжения должны быть заданы напряжение и МДС. Сечение обмоточного провода находим, исходя из потребной МДС:

, (4.13)

откуда , (4.14)

где удельное сопротивление; сред­няя длина витка (рис. 4.8); сопротивление обмотки, равное .

Из (4.13) следует, что при неизменной средней длине витка и заданном МДС определяется произведением .

Если при неизменном напряжении и средней дли­не витка требуется увеличить МДС, то необходимо взять провод большего сечения. При этом обмотка будет иметь меньшее число вит­ков. Ток в обмотке возрас­тет, так как сопротивление ее уменьшится за счет уменьшения числа витков и увели­чения сечения провода.

По найденному сечению с помощью таблиц сортаментов находится ближайший стан­дартный диаметр провода.

Мощность, выделяющаяся в обмотке в виде тепла, определяется следующим образом: .

Число витков обмотки при заданном сечении катушки определяется коэффициентом заполнения по меди , где – площадь, зани­маемая медью обмотки; – сечение обмотки по меди. Число витков . Тогда мощность, потребляемая обмоткой, определится выражением

.

Для расчета обмотки тока исходными параметрами яв­ляются МДС и ток цепи . Число витков обмотки нахо­дится из выражения . Сечение провода можно выбрать исходя из рекоменду­емой плотности тока, равной 2…4 А/мм 2 для продолжитель­ного, 5…12 А/мм 2 для повторно-кратковременного, 13…30 А/мм 2 для кратковременного режимов работы. Эти значения можно увеличить примерно в 2 раза, если срок службы обмотки и электромагнита не превышает 500 ч. Площадь окна, занимаемого рядовой обмоткой, определяется числом витков и диаметром провода

.

Зная , можно определить среднюю длину витка, сопротивление обмотки и потери в ней. После этого может быть проведена оценка нагрева обмотки.

Расчет обмотки электромагнитов переменного тока .

Исходными данными для расчета обмотки напряжения являются амплитуды МДС, магнитного потока и напряжение сети. Напряжение сети уравновешивается активным и реактивным падениями напряжения

где и – действующие значения напряжения и тока, соответственно.

Поскольку ток и сопротивление могут быть рассчитаны только после определения числа витков, то формула (4.15) не позво­ляет сразу найти все параметры обмотки. Задача решает­ся методом последовательных приближений.

Так как активное падение напряжения значительно меньше реактивного, то в начале расчета принимают .

Тогда число витков обмотки .

Если после подстановки полученных данных в (4.15) ле­вая часть отличается от правой более чем на 10 %, то не­обходимо варьировать число витков до получения удовле­творительного совпадения.

После расчета проводится проверка обмотки на на­грев. Расчет ведется так же, как и для обмоток постоянно­го тока.

Особенностью является нагрев магнитопровода за счет потерь от вихревых токов и гистерезиса. Отвод вы­деляемого в обмотке тепла через сердечник затруднен, точка с максимальной температурой лежит на внутрен­нем радиусе обмотки. Для улучшения охлаждения стре­мятся увеличивать поверхность торцов катушки при умень­шении ее длины.

Эскизы однофазных: электромагнитов переменного тока с различными типами магнитопроводов показаны на рис.2.1 - 2.3. Амплитудное значение магнитного потока Ф m при действующем значении напряжении питания U , частоте f и числе витков обмотки W без учета активного сопротивления обмотки определяется по формуле

Ф m = U/(4, 44 f W) . (2.1)

Число витков обмотки приближенно равно

W = U/ (4, 44 f Ф m) . (2.2)

С учетом активного сопротивления обмотки (коэффициент k n =0,7 + 0,9) при заданной индукции в рабочем зазоре B em и активном сечении магнитопровода S m число витков

W = k n U/ (4, 44 f B em S m) . (2.3)

Амплитудное значение силы для однофазных систем без экранирующего витка при равномерном поле в рабочем зазоре и ненасыщенной магнитной системе определяется по формуле Максвелла (2):

Р эм = Ф 2 m / (2m 0 S п), (2.4)

где S п - площадь полюса, м 2 .

Среднее значение силы

Р mψ = Р эм / 2 . (2.5)

Если магнитный поток изменяется по синусоидальному закону Ф i = Ф m sinwt, то мгновенное значение электромагнитного усилия, согласно (2.4),

Р э i = Р эм sin 2 wt = Р эм (1- cos 2wt). (2.6)

Методики определения электромагнитного усилия Р э в функции от величины зазора, а также от времени для электромагнитов переменного тока приведены в работах .

Рис.2.1. Эскиз электромагнита переменного тока с втягивающимся якорем, имеющим квадратное сечение: 1 - якорь; 2 - остов; 3 – обмотка

При определении основных размеров н параметров однофазных электромагнитов с экранирующими витками площадь сечения полюса (м 2) может быть найдена по приближенной формуле, полученной из уравнения Максвелла исходя из условия отсутствия вибрации якоря

S п = 1.12 к р Р пр. к ·10 -5 / В 2 d m , (2.7)

где к р = (1,1 - 1,3) - коэффициент запаса по силе; В 2 d m = (1/1,2) T л - индукция в рабочем зазоре, которую выбирают вблизи колена кривой намагничивания применяемых сталей; Р пр. к – расчетная противодействующая сила при притянутом якоре, Н (для двухкатушечного электромагнита с двумя рабочими зазорами Р’ пр. к = 0,5Р пр. к; S п =b·a - площадь сечения полюса, г; м 2 ; в/а = 1…2 - отношение ширины полюса к его толщине.


Рис. 2.3 Эскиз клапанного П-образного электромагнита переменного тока; 1 - якорь; 2 - сердечник; 3 - основа­ние; 4 - обмотка; 5 - экранирующий виток



Для двухкатушечного электромагнита при квадратном сечении полюса размер стороны квадрата (м), определяемый по приближенной формуле и условия превышения средней электромагиитной силы над противодействующей , равен


где Р п р - сила для той точки противодействующей характеристики, в которой произведение силы на зазор является максимальным.

При выбранной по уравнению (2,7) площади полюса S п ширина полюса (м) (при условии квадратного сечения) равна

где ∆ паз - ширина паза под экранирующий виток, выбирается из конструктивных соображений, м; k зс - коэффициент заполнения по стали.

Размер а 2 экранированной части полюса

а 2 = (b - ∆ паз)/ (1+ а э), (2.10)

где а э = 0,25 - 0,5 - отношение площади неэкраниреванной части полюса и экранированной.

Размер а 1 неэкранированной части полюса

а 1 = а э а 2. (2.11)

Электрическое сопротивление экранирующего витка (Ом)

1,11 π f μ 0 S n /δ к, (2.12)

где δ к - конечный зазор между якорем и полюсом, м.

Высота экранирующего витка (м)

h в = 2 (b +a 2 +2∆ в) / r в ∆ в, (2.13)

где ∆ в - толщина витка, м; = - удельное электрическое сопротивление материала экранирующего витка при температуре нагрева Q. Ом-м; d - температурный коэффициент сопротивления, I/ о C; - удельное электрическое сопротивление материала витка при Q 0 , Ом-м.

Определяется площадь полюса S э = а 2 b , охваченная витком, и площадь полюса S н = а 1 b, не охваченная витком. Если пренебречь потерями мощности в короткозамкнутом витке и падаиием МДС на стальных участках магнитной цепи, то можно рассчитать угол сдвига между магнитными потоками, преходящими через эти части полюса.

φ = arctg φ ≈ arctg ω λ δэк / τ в, (2.14)

где λ δэк - проводимость зазора в экранированной части полюса при притянутом якоре. Практически достигнуть φ = 90 о невозможно и обычно φ =50 - 80°.



Мгновенные значения усилий для неэкранированной P эн i , и экранированной Р ээ i частей полюса можно определить по формулам соответственно

P эн i = P эн m (1-cos 2 ωt) /2. (2.15)

P ээ i = P ээ m (1-cos 2 ωt) /2. (2.16)

где амплитуды усилий

P эн m = Ф 2 н m / (2 μ 0 S н). (2.17)

P ээт = Ф 2 э m / (2 μ 0 S 0). (2.18)

Амплитуды магнитных потоков:

Ф н m = Ф н m S н / S n. (2.19)

Ф э m = Ф э m S э / S n. (2.20)

Среднее значение суммарной силы, действующей на якорь,

P эΣ = P эн m / 2 + P ээ m / 2 = P энср + P ээср. (2.21)

Максимальное и минимальное усилия, действующие на якорь

P эΣ max = P эΣ + P ~ m , (2.22)

P эΣ min = P эΣ - P ~ m , (2.23)

Где - амплитуда усилия переменной составляющей.

Изменение электромагнитных сил во времени показано на рис.2.4.


Для устранения вибрации якоря должно выполняться условие P Σ min >P мех. Если его условие не соблюдается, то параметры экрана варьируются.

МДС обмотки (А) для двухкатушечного электромагнита с двумя экранирующими витками определяют по приближенной формуле

, (2.24)

Для магнитных систем с внешним притягивающимся якорем МДС обмотки (А) без учета магнитного сопротивления стали при заданном потоке в рабочем зазоре Ф δm находят по формуле

, (2.25)

где Z δ Σ - суммарной магнитное сопротивление, Г н -1 , выражение для которого находят по схеме замещения магнитной цепи. Для приближенных расчетов можно принять. Z δ Σ ≈ R δ Σ.

Площадь сечения обмоточного провода (м 2)

q = F / W ∆ пр, (2.26)

где ∆ пр - плотность тока в проводе, N/м.

Площадь обмоточного окна одной катушки в двухкатушечном электромагните (м 2) равна

Q 0 = 0,5 g W/ k з.м, (2.27)

где k з.м. - коэффициент заполнений обмотки по меди. Индуктивность обмотки

L = W 2 λ мΣ , (2.28)

где λ мΣ - эквивалентная магнитная проводимость системы, Гн.

Ток трогания (А) при начальной противодействующей силе Р пр (Н) для двухкатушечного электромагнита с двумя рабочими зазорами равен

, (2.29)

где dL/dδ - производная индуктивности по ходу якоря при начальном рабочем зазоре, Гн/м.

Амплитудное значение пускового тока при сопротивлении обмотки r 0

, (2.30)

где U m - aмплитудное значение напряжения питания.

Время срабатывания реле

Минимальное и максимальное время трогания

t тр мин = (arcsin k i тр) / (2 π f), (2.32)

t тр макс = [(arcsin (1-k i тр) – arcsin (1-k i тр)] / (2 π f) (2.33),

где k i тр = I тр /I m

Минимальное и максимальное время движения

где d - коэффициент рассеяния; Ф m - амплитуда магнитного потока В Σ , равная

Среднее значение тяговой (электромагнитной) силы электромагнита (Н) определяется по энергетической формуле

, (2.38)

где I = U/Z - ток в обмотке, А; ψ = E/(2 π f) – действующее значение среднего потокосцепления, В δ ;

ЭДС обмотки; dψ/dδ , dI/dδ - производные, определяемые методом графического дифференцирования зависимостей I = f (δ) и ψ = f (δ); -

полное сопротивление обмотки.

Построение тяговой характеристики Р эср = f (δ) производится в такой последовательности: задаваясь величиной зазора, определяют λ мэ, Z, I, E, ψ, строят зависимости I = f (δ) и ψ = f (δ), графическим методом определяют производные и dψ/dδ , dI/dδ. Эти значения подставляют в формулу (2.38).

Контрольное задание № 3. Расчет реле напряжения постоянного тока на герконах

Исходные данные

Студенты, у которых предпоследние цифры номера зачетной книжки от 0 до 3, применяют герконы типа КЭМ-1, от 3 до 7 - типа КЭМ-2, а от 7 до 9 - типа КЭМ-6. Номер варианта выбира­ется но последней цифре номера зачетной книжки в табл.3.1.

Требуется выбрать параметры обмотки управления для реле напряжения с внутренним расположением герконов.

Цилиндрическая обмотка, которая имеет длину, значительно больше ее диаметра, называется соленоидом. В переводе с английского, это слово обозначает – подобный трубе, то есть, это катушка, похожая на трубу.

Виды соленоидов

По назначению соленоиды разделяют на два класса:

  1. Стационарные . То есть, для магнитных полей стационарного вида, которые долго держатся при некоторых значениях.
  2. Импульсные . Для создания импульсных магнитных полей. Они могут существовать только в краткий период времени, не больше 1 с.

Стационарные способны создать поля не более 2,5х10 5 Э. Соленоиды импульсного типа могут создать поля 5х10 6 Э. Если при создании поля соленоиды не подвергаются деформации и не слишком греются, то магнитное поле прямо зависит от проходящего тока: Н = k*I , где k – постоянная величина соленоида, поддающаяся расчету.

Стационарные делятся:
  • Резистивные.
  • Сверхпроводящие.

Резистивные соленоиды производят из материалов, обладающих электрическим сопротивлением. В связи с этим вся подходящая к ним энергия переходит в теплоту. Чтобы избежать теплового разрушения устройства, необходимо отвести лишнее тепло. Для этих целей применяют криогенное или водяное охлаждение. Для этого требуется вспомогательная энергия, сравнимая с требуемой энергией для питания соленоида.

Сверхпроводящие соленоиды производят из сплавов, обладающих свойствами сверхпроводимости. Их электрическое сопротивление равно нулю при различных температурах во время эксперимента. При функционировании сверхпроводящего соленоида теплота выделяется только в подходящих проводниках и источнике напряжения. Источник питания в этом случае можно исключить, так как соленоид функционирует в короткозамкнутом режиме. При этом поле может существовать без расхода энергии бесконечно долго при условии сохранения сверхпроводимости.

Устройства для создания мощных магнитных полей включают в себя три главные части:
  1. Соленоид.
  2. Источник тока.
  3. Система охлаждения.

При проектировании соленоида берут во внимание величины внутреннего канала и мощности источника питания.

Создание устройства с резистивным соленоидом для образования стационарных полей является глобальной научно-технической задачей. В мире, в том числе и в нашей стране, существует всего несколько лабораторий с подобными устройствами. Применяются соленоиды различных конструкций, эксплуатация которых осуществляется около тепловой границы.

Для обслуживания таких устройств необходим персонал, состоящий из работников высокой квалификации, работа которых дорого ценится. Большая часть финансов расходуется на оплату электрической энергии. Эксплуатация и обслуживание таких мощных соленоидов со временем окупается, так как ученые и исследователи различных областей науки, из разных стран могут получать важнейшие результаты для развития науки.

Наиболее сложные и важные задачи можно решить путем применения сверхпроводящих соленоидов. Этот способ более эффективный, экономичный и простой. Для примера можно назвать создание мощных стационарных полей сверхпроводящими соленоидами. Наиболее оригинальное свойство сверхпроводимости – это отсутствие электрического сопротивления у некоторых сплавов и металлов при температуре ниже критического значения.

Явление сверхпроводимости позволяет производить соленоид, не имеющий диссипации энергии при прохождении электрического тока. Однако, образованное поле имеет ограничение в том, что при достижении некоторого значения критического поля свойство сверхпроводимости разрушается, и электрическое сопротивление возобновляется.

Критическое поле повышается при снижении температуры от 0 до наибольшего значения. Еще в 50-х годах прошлого века открыты сплавы, у которых критическая температура находится в интервале от 10 до 20 К. При этом они имеют свойства очень мощных критических полей.

Технология создания таких сплавов и производство из них материалов для катушек соленоидов очень трудоемка и сложна. Поэтому такие устройства имеют высокую стоимость. Однако их эксплуатация недорогая и простая в обслуживании. Для этого необходим только источник питания низкого напряжения небольшой мощности и жидкий гелий. Мощность источника понадобится не выше 1 киловатта. Устройство таких соленоидов состоит из катушки, выполненной из меди и сверхпроводника многожильным проводом, лентой или шиной.

Существует возможность снижения энергетических затрат на создание еще более мощных полей. Эта возможность реализуется в нескольких ведущих странах, в том числе и в России. Такой способ основан на применении комбинации из водоохлаждаемого и сверхпроводящего соленоидов. Его еще называют гибридным соленоидом. В этом устройстве интегрируются наибольшие достижимые поля обоих типов соленоидов.

Водоохлаждаемый соленоид должен находиться внутри сверхпроводящего. Создание гибридного соленоида является объемной и сложной научно-технической проблемой. Для ее решения требуется работа нескольких коллективов научных учреждений. Подобное гибридное устройство эксплуатируется в нашей стране в Академии наук. Там соленоид со сверхпроводящими свойствами имеет массу 1,5 тонны. Обмотка выполнена из специальных сплавов ниобия с цинком и титаном. Обмотка водоохлаждаемого соленоида выполнена медной шиной.

Устройство и принцип действия

Соленоидом также можно назвать катушку индуктивности, которая намотана проводом на каркас в виде цилиндра. Такие катушки могут быть намотаны как одним, так и несколькими слоями. Так как длина обмотки намного больше диаметра, то при подключении постоянного напряжения на эту обмотку, внутри катушки образуется .

Часто соленоидами называют электромеханические устройства, содержащие катушку, внутри которой имеется ферромагнитный сердечник. Такие устройства выполнены в виде втягивающих реле автомобильного стартера, различных электроклапанов. Втягивающим элементом такого своеобразного электромагнита является сердечник из ферромагнитного материала.

Если в устройстве соленоида нет сердечника, то при подключении постоянного тока вдоль обмотки образуется магнитное поле. Индукция этого поля равна:

Где, N – количество витков в обмотке, l – длина катушки, I – ток, протекающий по соленоиду, μ0

На концах соленоида величина магнитной индукции в два раза ниже, по сравнению с внутренней частью, так как две части соленоида совместно образуют двойное магнитное поле. Это применимо к длинному или бесконечному соленоиду, в сравнении с диаметром каркаса обмотки.

По краям соленоида магнитная индукция равна:

Так как соленоиды являются катушками индуктивности, следовательно, соленоид может запасать энергию в магнитном поле. Эта энергия равна работе, совершаемой источником, для образования тока в обмотке.

Этот ток образует в соленоиде магнитное поле:

Если ток в катушке изменяется, то возникает ЭДС самоиндукции. В этом случае напряжение на соленоиде определяется:

Индуктивность соленоида определяется:

Где, V – объем катушки соленоида, z – длина проводника катушки, n – количество витков, l – длина катушки, μ0 - вакуумная магнитная проницаемость.

При подключении к проводникам соленоида переменного напряжения, магнитное поле будет создаваться тоже переменным. Соленоид имеет сопротивление переменному току в виде комплекса двух составляющих: . Они зависят от индуктивности и электрического сопротивления проводника катушки.

Электромагниты нашли в аппаратостроении широкое применение и как элемент привода аппаратов (контакторы, пускатели, реле, автоматы, выключатели), и как устройство, создающее силы, например, в муфтах и тормозах.

При заданном потоке падение магнитного потенциала уменьшается с уменьшением магнитного сопротивления. Так как сопротивление обратно пропорционально магнитной проницаемости материала, при данном потоке магнитная проницаемость должна быть возможно выше. Это позволяет уменьшить м.д.с. обмотки и мощность, необходимую для срабатывания электромагнита; уменьшаются размеры обмоточного окна и всего электромагнита. Уменьшение м.д.с. при прочих неизменных параметрах уменьшает температуру обмотки.

Вторым важным параметром материала является индукция насыщения. Сила, развиваемая электромагнитом, пропорциональна квадрату индукции. Поэтому чем больше допустимая индукция, тем больше развиваемая сила при тех же размерах.

После того, как обмотка электромагнита обесточивается, в системе существует остаточный поток, который определяется коэрцитивной силой материала и проводимостью рабочего зазора. Остаточный поток может привести к залипанию якоря. Во избежание этого явления требуется, чтобы материал обладал низкой коэрцитивной силой.

Существенными требованиями являются низкая стоимость материала и его технологичность.

Наряду с указанными свойствами магнитные характеристики материалов должны быть стабильны (не изменяться от температуры, времени, механических ударов).

В результате расчета магнитной цепи определяется не­обходимая магнито-движущая сила (МДС) обмотки. Обмотка должна быть рассчитана таким образом, чтобы, с одной стороны, обеспечить требуе­мую МДС, а с другой – чтобы ее максимальная темпера­тура не превышала допустимой для используемого класса изоляции.

В зависимости от способа включения различают обмот­ки напряжения и обмотки тока. В первом случае напряже­ние, приложенное к обмотке, постоянно по своему действу­ющему значению, во втором - сопротивление обмотки электромагнита намного меньше сопротивления остальной части цепи, которым и определяется неизменное значение тока.

Расчет обмотки электромагнита постоянного тока .

На рисунке 72 показаны магнитопровод и катушка электро­магнита. Обмотка 1 катушки выполняется изолированным проводом, который наматывается на каркас 2.

Катушки могут быть и бескаркасными. В этом случае витки обмотки скрепляются ленточной или листовой изоляцией либо заливочным компаундом.

Для расчета обмотки напряжения должны быть заданы напряжение U и МДС. Сечение обмоточного провода q находим, исходя из потребной МДС:

где – удельное сопротивление;

– сред­няя длина витка (рисунок 72);

R – сопротивление обмотки, равное

При неизменной средней длине витка и заданном МДС определяется произведением .

Если при неизменном напряжении и средней дли­не витка требуется увеличить МДС, то необходимо взять провод большего сечения. При этом обмотка будет иметь меньшее число вит­ков. Ток в обмотке возрас­тет, так как сопротивление ее уменьшится за счет уменьшения числа витков и увели­чения сечения провода.

По найденному сечению с помощью таблиц сортаментов находится ближайший стан­дартный диаметр провода.

Рисунок 72 – К расчету обмотки электромагнита

Мощность, выделяющаяся в обмотке в виде тепла, определяется следующим образом:

Число витков обмотки при заданном сечении катушки определяется коэффициентом заполнения по меди

где – площадь, зани­маемая медью обмотки;

– сечение обмотки по меди.

Число витков

.

Тогда мощность, потребляемая обмоткой, определится выражением

.

Для расчета обмотки тока исходными параметрами яв­ляются МДС и ток цепи . Число витков обмотки нахо­дится из выражения . Сечение провода можно выбрать исходя из рекоменду­емой плотности тока, равной 2…4 А/мм 2 для продолжитель­ного, 5…12 А/мм 2 для повторно-кратковременного, 13…30 А/мм 2 для кратковременного режимов работы. Эти значения можно увеличить примерно в 2 раза, если срок службы обмотки и электромагнита не превышает 500 ч. Площадь окна, занимаемого рядовой обмоткой, определяется числом витков и диаметром провода d