Газогорелочные устройства их назначение и классификация. Газовые горелки для котлов отопления — виды и принцип работы. В существующих газоиспользующих установках применяют системы частичной или комплексной автоматизации

В литературе газовые горелки классифицируются по: а) теп­лоте сгорания газа; б) давлению газа в сети; в) назначению; г) ме­тоду сжигания газа; д) способу подвода воздуха; е) конструктив­ным особенностям и т. д.

Диффузионные горелки. У них весь необходимый воздух прите­кает к пламени из окружающей атмосферы. Эти горелки малочув­ствительны к колебанию давления газа, имеют большой диапазон регулирования, но требуют значительного объема топочной камеры

Я завершения процесса горения. Это объясняется малой ско­ростью перемешивания газа с воздухом, что приводит к увеличе­нию длины факела. Для газов с большой теплотой сгсрания, тре­бующих для полного сжигания больших количеств воздуха, такие горелки применяются редко.

2 А. с. Иссерлин

Инспекционные горелки. Образование газовоздушной смеси ча­стично или полностью происходит внутри самой горелки, поэтому они делятся на горелки частичного-и полного смешения. У горелок полного смешения горение завершается в минимальном объеме. В горелках частичного смешения только часть воздуха, необходи­мого для горения, поступает внутрь горелки в качестве первич­ного, а остальной воздух (вторичный) поступает к горелке извне. В этом случае процесс смешения затягивается и факел получается более длинным. Поступление воздуха и образование газовоздуш­ной смеси в инжекционных горелках происходит подсасыванием (эжектированием) воздуха за счет энергии струи газа.

Инжекционная горелка (рис. 3) состоит из четырех основных частей: газового сопла, смесителя, горелочного насадка и регуля­тора первичного воздуха.

Соплом называют калиброванное отверстие, через которое го­рючий газ подается в горелку. Оно выполняет две задачи: пропу­скает в горелку определенное количество газа и преобразовывает потенциальную энергию газа в кинетическую энергию газовой струи, причем скорость истечения газа из сопла получается до­вольно значительной. Так, перепад давления в сопле 150 мм вод. ст. создает скорость вытекающей струи порядка 50 м/сек.

Основным размером, характеризующим сопло, является его диаметр. Диаметр сопла должен строго соответствовать расчетным данным, так как от этого зависят производительность горелки и ее инжекционная способность. Сопло придает вытекающей струе определенную форму и направление.

Смеситель горелки служит для смешения газа с воздухом, т. е. получения однородной газовоздушной смеси, и выравнивания ско­рости по сечению горелки. Смесители в зависимости от типа го­релки выполняются либо в виде системы, состоящей из инжектора, цилиндрического горла и диффузора, либо в виде цилиндрической трубы.

Инжектор расширяющейся частью обращен к соплу. При исте­чении из сопла газа с большой скоростью в инжекторе создается разрежение, за счет которого происходит подсасывание воздуха из окружающей атмосферы. Воздух, поступающий в горелку, смеши­

Вается с газом, при этом скорость по сечению инжектора распреде­ляется весьма неравномерно.

Для выравнивания скорости потока газовоздушной смеси по сечению служит средняя цилиндрическая часть смесителя - горло. Оно является самой узкой его частью. Диаметр горла - суще­ственный фактор для инжекционных горелок. От величины отноше­ния диаметра горла к диаметру сопла зависит коэффициент ин- жекции горелки, т. е. количество воздуха, засасываемого через смеситель. Если, например, коэффициент эжекции А равен 8,0, то это значит, что на каждый кубометр газа горелка эжектирует

8,0 м3 воздуха. Следовательно, коэффициент избытка воздуха опре­делится как отношение коэффициента эжекции к количеству воз­духа, теоретически необходимому для горения, т. е.

Диффузор служит для преобразования части скоростного на­пора потока в статический, необходимый для преодоления после­дующего сопротивления горелки. В диффузоре заканчивается сме­шение газа с воздухом, и на выходе из него наблюдается полное выравнивание концентраций по сечению.

Насадок горелки предназначен для выдачи газовоздушной смеси и может иметь различную форму. Он часто конструктивно совмещается со стабилизатором (например, в пластинчатом или кольцевом стабилизаторе). Иногда горелка крепится насадком к газовому прибору или топочной камере.

Регулятор первичного воздуха служит для регулирования коли­чества воздуха, поступающего в горелку. Наиболее часто он вы­полняется в виде воздушно-регулировочной шайбы или заслонки. Иногда он конструктивно совмещается с устройством для глуше­ния шума (например, у инжекционных горелок среднего давле­ния с пластинчатыми стабилизаторами конструкции Мосгазпро - екта).

Инжекционные горелки полного смешения рассчитываются обычно на работу с коэффициентом избытка воздуха 1,05-1,15. В инжекционных горелках частичного смешения коэффициент из­бытка первичного воздуха находится в пределах 0,3-0,6.

В инжекционных горелках полного смешения можно сжигать всю газовоздушную смесь на огнеупорных поверхностях, которые, накаляясь, дают концентрированное тепловое излучение. Эта раз­новидность инжекционных горелок называется горелками инфра­красного излучения.

Горелки с принудительной подачей воздуха. Весь необходимый Для горения воздух нагнетается вентилятором. Эти горелки часто называют также двухпроводными. На рис. 4 показаны схемы наи­более распространенных горелок с принудительной подачей воз­духа. Горелка на рис. 4,а имеет периферийную подачу газа, т. е. газ подается в виде струй в поперечный воздушный поток. В го­
релке на рис. 4, Б осуществляется центральная подача газа в поток воздуха.

В горелках с принудительной подачей воздуха для лучшего смешения газа с воздухом используются различные конструктив­ные приемы. Например, можно закручивать воздушный поток в специальных устройствах, разбивать поток газа на мелкие струи или подавать газ под углом к воздушному потоку.

В зависимости от конструкции горелки весь воздух может пода­ваться в качестве первичного либо часть его как первичный, часть - как вторичный.

Рис, 4. Принципиальная схема горелки с принудительной подачей воздуха. а - периферийная; б - центральная подача газа.

Комбинированные горелки. В них возможно поочередное сжига­ние нескольких видов топлива. Существуют горелки, рассчитанные на сжигание трех видов топлива. Некоторые конструкции комбини­рованных горелок допускают одновременное сжигание двух видов топлива. Более широкое распространение получили пылегазовые и газомазутные горелки.

Из-за отсутствия нормативных данных на газовые горелки при­ходится оценивать их качество по определенным требованиям, ко­торые сводятся к следующему:

1) горелки должны обеспечивать полное сжигание газа при минимальном избытке воздуха;

2) горелки должны работать устойчиво (без отрыва и проскока пламени) в необходимом диапазоне изменения тепловых нагрузок;

3) конструкция и компоновка горелки должны полностью пре­дохранять ее детали от перегрева и обгорания;

4) потери напора в горелке по воздушному и газовому (для низкого давления) трактам должны быть минимальными;

5) при работе горелки на двух видах топлива оба топлива при раздельном их сжигании должны использоваться с максимальной
эффективностью, а переход с одного топлива на другое осуществ­ляться в короткий срок;

6) горелки должны быть просты в изготовлении, надежны и безопасны в эксплуатации, удобны для ремонта и осмотра.

Газовая горелка - это устройство для смешения кислорода с газообразным топливом с целью подачи смеси к выходному отверстию и сжигания её с образованием устойчивого факела. В газовой горелке газообразное топливо, подаваемое под давлением, смешивается в смесительном устройстве с воздухом (кислородом воздуха) и образовавшаяся смесь поджигается на выходе из смесительного устройства с образованием устойчивого постоянного пламени.

Газовые горелки обладают широким спектром достоинств. Конструкция газовой горелки очень проста. Ее запуск занимает доли секунды и работает такая горелка практически безотказно. Газовые горелки используются для отопительных котлов или промышленного применения.

Сегодня существует два основных вида газовых горелок, их разделение ведется в зависимости от используемого метода образования горючей смеси (состоящей из топлива и воздуха). Различают атмосферные (инжекторные) и наддувные (вентиляционные) устройства. В большинстве случаев первый вид является частью котла и входит в его стоимость, второй же вид чаще всего приобретается отдельно. Наддувная горелка газовая в качестве инструмента горения более эффективна, поскольку в них подача воздуха осуществляется специальным вентилятором (встроенным в горелку).

Назначениями газовых горелок являются:

– подача газа и воздуха к фронту горения;

– смесеобразование;

– стабилизация фронта воспламенения;

– обеспечение требуемой интенсивности горения.

Типы газовых горелок:

Диффузионная горелка – горелка, в которой топливо и воздух смешиваются при горении.

Инжекционная горелкагазовая горелка с предварительным смешиванием газа с воздухом, у которой одна из сред, необходимых для горения, подсасывается в камеру горения другой среды (синоним– эжекционная горелка)



Горелка с полым предварительным смешением – горелка, в которой газ смешивается полным объемом воздуха перед выходными отверстиями.

Большая группа разнообразных по конструкций и различных по производительности горелок относится к горелкам с незавершенным предварительным смешением газа с воздухом. У горелок этого типа процесс смесеобразования начинается в самой горелке и активно завершается в топочной камере. Вследствие этого газ сгорает коротким и несветящимся пламенем. В связи с тем что до выхода в топку, где начинается процесс горения, газовоздушная смесь частично была приготовлена, скорость горения определяется диффузионными и кинетическими факторами. Следовательно, у этих горелок осуществляется диффузионно-кинетический способ сжигания газа. Горелки рассмотренного типа состоят из систем раздельной подачи газа и всего воздуха, необходимого для горения, а также устройств, в которых начинается процесс смесеобразования. В топку поступает газовоздушная смесь, представляющая собой турбулентный поток с неравномерными полями концентраций горючего и окислителя в поперечном сечении. Попадая в зону высоких температур, смесь воспламеняется. Участки потока, в которых концентрация газа и воздуха находится в стехиометрическом соотношении, сгорают кинетическим способом, а зоны, в которых процесс смесеобразования не завершен, выгорают диффузионно. Процессом смешения в топке управляет смесительное устройство горелки, так как структуру потока и движение его отдельных частиц определяют условия его выхода из смесителя. Смешение газа и воздуха у этих горелок происходит в результате турбулентной диффузии, поэтому такие горелки называют горелками турбулентного смешения. Для повышения интенсивности процесса сжигания газа следует максимально интенсифицировать смеше ние газа с воздухом, так как смесеобразование является тормозящим звеном всего процесса. Интенсификации процесса смесеобразования достигают: закручиванием потока воздуха направляющими лопатками; тангенциальным подводом или устройством улиток; подачей газа в виде мелких струй под углом к потоку воздуха расчленением потоков газа и воздуха на мелкие потоки, в которых происходит смесеобразование. Горелки турбулентного смешения нашли широкое применение. Основными положительными качествами таких горелок являются: а) возможность сжигания большого количества газа при сравнительно небольших габаритах горелки (особенно важно для мощных котлов); б) широкий диапазон регулирования производительности горелки; в) возможность подогрева газа и воздуха до температур, превышающих температуру воспламенения, что имеет большое значение для некоторых высокотемпературных печей; г) сравнительно простое выполнение конструкций с комбинированным сжиганием топлива (газа - мазута, газа - угольной пыли). Недостатки рассматриваемых горелок: принудительная подача воздуха и сжигание газа с химической неполнотой, большей, чем при кинетическом горении. Горелки турбулентного смешения имеют различную производительность от 60 кВт до 60 МВт. Их используют для обогрева промышленных печей и котлов.

Горелки турбулентного смешения ГНП конструкции Теплопроекта производительностью 7 ... 250 м3/ч при давлении газа и воздуха 0,4 ... 2 кПа показаны на рис. 16.10. Горелки выпускают девяти типоразмеров с двумя типами наконечников газового сопла. Наконечник А обеспечивает короткофакельное сжигание, а наконечник Б создает удлиненный факел. Газ входит в горелку через патрубок и истекает с определенной скоростью из сопла. Воздух в горелку подают под давлением, перед входом в носик горелки он закручивается. Смешение газа с воздухом начинается внутри горелки при выходе газа из сопла и интенсифицируется закрученным потоком воздуха. При многоструйной подаче газа (с наконечником А) процесс образования смеси протекает быстрее и газ сгорает в коротком факеле. Горелку устанавливают совместно с керамическим туннелем, служащим стабилизатором горения. Горелки обеспечивают сжигание газа при отсутствии химической неполноты при коэффициенте избытка воздуха α= 1,05 ... 1,1. При давлении газа 4 кПа длина факела для горелок с наконечником типа А в зависимости от ипоразмера горелки изменяется от 0,6 до 2,3 м. Основные размеры серии горелок ГНП следующие: диаметр выходного отверстия изменяется в пределах D= 25 ..142 мм; диаметр газовых отверстий у наконечника типа А равен: d=3,2 ... 15,5, а число их изменяется от 4 до 6; диаметр газового отверстия у наконечника типа Б равен: di = 5,5 ... 31 мм (обозначения показаны на рис. 16.10). По результатам государственных испытаний горелки рекомендованы к применению. Основными положительными качествами их являются: простота и компактность конструкции, возможность работы при низких давлениях газа и воздуха, широкие пределы регулирования производительности. Горелки этого типа предназначены для обогрева кузнечных и термических печей,сушилок.

Рис. 16.10. Турбулентная горелка типа ГНП 1- корпус, 2- сопло, 3- наконечник сопла типа А, 4 - наконечник сопла типа Б, 5- носик

Горелка не с полым предварительным смешением горелка, в которой газ не полностью смешивается с воздухом перед выходными отверстиями. Атмосферная газовая горелкаинжекционная газовая горелка с частичным предварительным смешением газа с воздухом, использующая вторичный воздух среды, окружающей факел.

Атмосферная горелка, предназначенная для установки в топке четырех- и пятисекционных чугунных котлов (ВНИИСТО-Мч), показана на рис. 16.8. Головка горелки имеет 142 отверстия диаметром 4 мм и надевается на эжекционную трубку. В месте выхода газовоздушной смеси из эжектора головка не имеет отверстий. Если здесь расположить отверстия, то пламя над ними будет значительно выше, чем над другими отверстиями, так как при истечении газа из этих отверстий будет использовано динамическое давление потока газовоздушной смеси, движущегося из эжекционной трубки в головку горелки. Кроме того, вследствие повышения выходной скорости пламя над этими отверстиями может быть недостаточно устойчивым. Тепловая нагрузка горелки равна 20 кВт (0,2 м3/ч при QCK == 36 МДж/м3). Горелка запроектирована для сжигания газа с теплотой сгорания QCH= 25 000...36 000 кДж/м3, при этом в зависимости от величины QCH изменяют диаметр сопла. При сжигании природного газа с теплотой сгорания 36 000 кДж/м3 диаметр сопла равен 4 мм, а необходимое давление газа составляет 1,3 кПа. Коэффициент первичного воздуха горелки можно регулировать воздушной шайбой. Эжекционная трубка имеет проточную часть с малым гидравлическим сопротивлением. Головка горелки выполнена таким образом, что вторичный воздух имеет подход к каждому ряду отверстий с одной стороны. Высота пламени при работе горелки с нормальной тепловой нагрузкой примерно равна 100 мм. Горелка проста по конструкции и надежна в эксплуатации. При работе в чугунных секционных котлах атмосферные горелки обеспечивают полное сжигание газа при сравнительно небольшом содержании в продуктах горения оксидов азота. Концентрация NO X обычно не превосходит 0,12 г/м 3 . Это связано с рассредоточением пламени и ступенчатым сжиганием газа (с первичным и вторичным воздухом).

Рис. 16.8. Атмосферная горелка для чугунного котла 1- регулятор воздуха, 2- сопло, 3- эжекционная трубка; 4- головка горелки с огневыми отверстиями

Атмосферная горелка с одним выходным отверстием показана на рис. 16.9. Особенность этой горелки заключается в том, что ее головка имеет не коллектор с большим числом мелких отверстий, а коническую трубку с одним отверстием большого диаметра (40 мм). В результате этого значительно удлиняется пламя горелки. Вследствие разрежения в топке вторичный воздух по кольцевому зазору между горелкой и специальным кожухом поступает к корню факела. У горелки предусмотрена возможность регулирования количества первичного и вторичного воздуха. Такие горелки применяют при переоборудовании на газовое топливо ресторанных плит и пищеварочных котлов (причем в плите может быть одна горелка или блок, состоящий из двух-трех горелок). Тепловая нагрузка горелки составляет 18,6 кВт, давление газа 1,3 кПа. Горелка рассчитана на сжигание газа с теплотой сгорания Q с н =36 000 кДж/м3. В зависимости от теплоты сгорания газа в горелке устанавливают сопло соответствующего диаметра.

Рис. 16.9. Атмосферная горелка с одним выходным отверстием 1- головка горелки, 2- эжекционный смеситель, 3- регулятор, 4- сопло, 5- регулятор первичного воздуха

Горелка специального назначениягорелка, принцип действия и конструкцию которой определяет тип теплового агрегата или особенности технологического процесса.

Рекуперативная горелкагорелка, снабженная рекуператором для подогрева газа или воздуха

Регенеративная горелка– горелка, снабженная ре генератором для подогрева газа или воздуха.

Автоматическая горелкагорелка, оборудованная автоматическими устройствами: дистанционным запальным, контроля пламени, контроля давления топлива и воздуха, запорными клапанами и средствами управления, регулирования и сигнализации.

Турбинная горелкагазовая горелка, в которой энергия вытекающих струй газа используется для привода встроенного вентилятора, нагнетающего воздух в горелку.

Запальная горелкавспомогательная горелка, служащая для розжига основной горелки.

Наиболее применимы на сегодняшний день классификация горелок по способу подачи воздуха, которые делятся на:

– бездутьевые – воздух поступает в топку за счет разрежения в ней;

– инжекционные – воздух засасывается за счет энергии струи газа;

– дутьевые – воздух подается в горелку или топку с помощью вентилятора.

Блочные эжекционные (инжекционные) горелки типа Б И Г, разработанные Промэнергогазом. Горелки этого типа представляют собой серию горелок разных конфигураций и производительности, компонуемых из стандартных элементов. Стандартный элемент горелки состоит из набора единичных однотипных смесителей 2 (рис. 16.4, а), закрепленных в общем коллекторе - газовой камере 3. Единичный смеситель представляет собой трубу диаметром 48X3 мм и длиной 290 мм. В начальной части трубы, которая находится внутри газового коллектора, имеются четыре отверстия диаметром по 1,5 мм каждое, оси которых расположены под углом около 25° к оси горелки. Эти отверстия выполняют роль периферийных сопел, через которые газ истекает внутрь эжекционной трубы и эжектирует воздух, поступающий через открытый торец трубы. Конструкция эжекционной части отработана таким образом, что при разрежении в топке, равном 20 Па, газ эжектирует весь воздух, необходимый для горения, с коэффициентом избытка а= 1,02...1,05. Высокие скорости газовых струй, расположенных по периферии, способствуют созданию профиля скоростей, препятствующего проскоку пламени. Блоки горелок футеруются огнеупорной массой (см. рис. 16.4, б), а на их выходе располагается туннель-стабилизатор глубиной 100 мм. Он предотвращает отрыв пламени. Горелки полностью размещаются в пределах обмуровки котла толщиной 510 мм. Номинальное давление газа перед горелкой составляет 80 кПа (среднее давление), коэффициент глубины регулирования производительности равен 3,4...3,8. В зависимости от компоновки (числа единичных элементов) производительность горелки изменяется от 10 до 240 м3/ч. Горелки БИГ работают без химической неполноты сгорания с малыми избытками воздуха. Содержание оксидов азота составляет 0,15 .. 0,18 г/м3. Горелки компонуют в виде стандартных наборов (см. рис. 16.4, в), состоящих из единичных эжекционных трубок, собранных в один ряд G типоразмеров), в два ряда F типоразмеров) и в три ряда B типоразмера). Горелки предназначены для оборудования котлоагрегатов с расположением в обмуровке стенок котла и на поду вместо колосниковой решетки. Котлы, оборудованные горелками БИГ, имеют более высокий КПД (на 2%), чем при оборудовании эжекционными горелками с центрально расположенными соплами.

Используют газовые горелки при различных давлениях газа: низком – до 5000 Па, среднем – от 5000 Па до 0,3 МПа и высоком – более 0,3 МПа. Чаще используют горелки, Большое значение имеет тепловая мощность газовой горелки, которая бывает максимальная, минимальная и номинальная.

При длительной работе горелки, где газа расходуется большее количество без отрыва пламени, достигается максимальная тепловая мощность.

Минимальная тепловая мощность возникает при устойчивой работе горелки и наименьших расходах газа без проскока пламени.

При работе горелки с номинальным, обеспечивающим максимальный КПД при наибольшей полноте сжигания, расходом газа достигается номинальная тепловая мощность.

Допускается превышение максимальной тепловой мощности над номинальной не более чем на 20%. В случае если номинальная тепловая мощность горелки по паспорту 10000 кДж/ч, максимальная должна быть 12000 кДж/ч.

Еще одной важной особенностью газовых горелок является диапазон регулирования тепловой мощности.

На сегодня используется большое количество горелок различной конструкции.

Выбирается горелка по определенным требованиям, к которым относятся: устойчивость при изменениях тепловой мощности, надежность в эксплуатации, компактность, удобство при обслуживании, обеспечение полноты сгорания газа.

Основные параметры и характеристики используемых газогорелочных устройств определены требованиями:

– тепловая мощность, вычисляемая как произведение часового расхода газа, м 3 /ч, на его низшую теплоту сгорания, Дж/м 3 , и являющаяся главной характеристикой горелки;

– параметры сжигаемого газа (низшая теплота сгорания, плотность, число Воббе);

– номинальная тепловая мощность, равная максимально достигаемой мощности при длительной работе горелки с минимальным " коэффициентом избытка а воздуха и при условии, что химический недожог не превышает установленных для данного типа горелок значений;

– номинальное давление газа и воздуха, соответствующее номинальной тепловой мощности горелки при атмосферном давлении в топочной камере;

– номинальная относительная длина факела, равная расстоянию по оси факела от выходного сечения (сопла) горелки при номинальной тепловой мощности до точки, где содержание углекислого газа при α = 1 равно 95% его максимального значения;

– коэффициент предельного регулирования тепловой мощности, равный отношению максимальной тепловой мощности к минимальной;

– коэффициент рабочего регулирования горелки по тепловой мощности, равный отношению номинальной тепловой мощности к минимальной;

– давление (разрежение) в топочной камере при номинальной мощности горелки;

– теплотехнические (светимость, степень черноты) и аэродинамические характеристики факела;

– удельная металло– и материалоемкость и удельный расход энергии, отнесенные к номинальной тепловой мощности;

– уровень звукового давления, создаваемый работающей горелкой при номинальной тепловой мощности.

Требования к горелкам

На основании опыта эксплуатации и анализа конструкции горелочных устройств можно сформулировать основные требования к их конструкции.

Конструкция горелки должна быть наиболее простой: без подвижных частей, без устройств, изменяющих сечение для прохода газа и воздуха и без деталей сложной формы, расположенных вблизи носика горелки. Сложные устройства при эксплуатации себя не оправдывают и быстро выходят из строя под действием высоких температур в рабочем пространстве печи.

Сечения для выхода газа, воздуха и газовоздушной смеси следует отрабатывать в процессе создания горелки. В процессе эксплуатации все эти сечения должны быть неизменными.

Количество газа и воздуха, подаваемого на горелку, следует измерять дроссельными устройствами на подводящих трубопроводах.

Сечения для прохода газа и воздуха в горелке и конфигурацию внутренних полостей следует выбирать таким образом, чтобы сопротивление на пути движения газа и воздуха внутри горелки было бы минимальным.

Давление газа и воздуха в основном должно обеспечивать требуемые скорости в выходных сечениях горелки. Желательно, чтобы подача воздуха в горелку была регулируемой. Неорганизованная подача воздуха в результате разрежения в рабочем пространстве или путем частичного инжектирования воздуха газом может допускаться только в особых случаях.

Газоснабжение зданий

Газоснабжение зданий - снабжение газом при помощи системы газопроводов, по к-рым газ от городской распределит, сети поступает к газовым приборам, установленным у потребителей. Система газоснабжения включает: абонентские ответвления, присоединяемые к городской распределит, сети и подающие газ к зданию; внутридомовые газопроводы, транспортирующие газ внутри здания и распределяющие его между отдельными газовыми приборами.

Абонентское ответвление состоит из ввода газа на территорию потребителя, внутри- дворовых газопроводов и вводов газа в здание. На вводе газа к потребителю, на расстоянии не менее 2 м от линии застройки, в колодце делается задвижка или кран. На группу жилых зданий, обслуживаемых одним вводом, устанавливается одно отключающее устройство.

Рис. Схема газоснабжения здания : 1 - уличная сеть газа низкого давления; 2 - дворовый газопровод; 3- конденсатосборник; 4 - ввод газа; 5 - запорная арматура; 6 - распределительный газопровод; 7 - стояки; 8 - поэтажные разводки; 9 - газовые приборы; 10-ковер; 11 - задвижка

Вводы на территорию потребителей и дворовая газовая сеть, как правило, прокладываются в грунте. Условия их прокладки не отличаются от условий прокладки подземных городских газопроводов. Вводы газопроводов в жилые и обществ, здания могут осуществляться: в каждую лестничную клетку; непосредственно в кухни жилых зданий или в помещения обществ, зданий, где потребляется газ; в подвалы зданий, имеющих технич. коридоры. При осушенном газе вводы целесообразно выполнять через стены выше фундаментов. Устройство ввода в здание через технич. коридоры допускается при следующих условиях: при высоте коридора не менее 1,6 м; при наличии не менее двух входов в коридор снаружи, не связанных с др. частями здания; при естественной вытяжной вентиляции в коридоре, обеспечивающей не менее однократного обмена воздухом; электрич. освещение.коридора должно быть взрывобезопасным; при огнестойких потолочных перекрытиях. Устройство вводов непосредственно в жилые помещения, машинные отделения лифтов, насосные отделения, вентиляционные камеры и т. п. не допускается.

Внутридомовые газопроводы разделяются па стояки, транспортирующие газ в вертикальном направлении, и внутриквартирные газопроводы, подающие газ от стояков к отдельным газовым приборам. Газовые стояки, как правило, прокладываются в лестничных клетках и кухнях. Прокладка стояков в жилых помещениях г в ванных комнатах и санузлах запрещается. Для отключения отдельных участков газопроводов делаются краны: на вводах в здание, в квартирах перед каждым газовым прибором.

Перед счетчиками и газовыми приборами размещают бронзовые (латунные) и комбинированные краны с натяжными пробками. На вводах в здание ставят бронзовые или чугунные пробочные натяжные краны или задвижки. На стояках, ответвлениях к: квартирам и перед каждым газовым прибором после кранов, считая по ходу газа, устанавливаются сгоны, необходимые для ремонтных работ.

Газопроводы внутри зданий выполняются из стальных труб. Трубы соединяются на сварке или на резьбе. Перспективно применение труб из пластмасс (винипласта, полиэтилена и др.). Газопроводы в зданиях прокладываются открыто на высоте не менее 2,0 м от пола до низа трубы; при снабжении влажным газом - с уклоном не менее 0,002 от счетчика к стояку и от счетчика к газовым приборам. При пересечении перекрытий лестничных площадок, и пустотелых или засыпанных стен газопроводы заключаются в футляры из стальных труб.

Основные приборы, применяемые для газоснабжения: плиты, водонагреватели, пищеварочные котлы, духовые шкафы и кипятильники. В квартирах устанавливаютея бытовые газовые плиты и водонагреватели. Эти же приборы применяются у общественных и мелких коммунальных потребителей. Предприятия обществ, питания оснащаются более мощными газовыми плитами - ресторанного типа, пшцеварочными котлами, духовыми шкафами, кипятильниками и водонагревателями. В малоэтажных зданиях при печном отоплении газ может использоваться также для обогрева печей. Для измерения расхода газа у потребителей служат газовые счетчики. Газовые счетчики ие устанавливаются в новых жилых домах.

У большинства газовых приборов должен быть предусмотрен отвод дымовых газов по дымоходам в атмосферу. Во вновь проектируемых зданиях дымовые газы отводятся от каждого прибора по обособленному дымоходу. В существующих зданиях разрешается присоединение к одному дымоходу трех газовых приборов, расположенных в одном или разных этажах. Продукты сгорания вводятся в дымоход на разных уровнях, на расстоянии друг от друга не менее 500 мм. Газовые приборы присоединяются к дымоходам с помощью труб из кровельной стали, диаметр к-рых определяется в зависимости от тепловой нагрузки прибора: до 10000 ккал!час - от 100 до 125 мм, до 20000-25000 ккал!час - от 125 до 150 мм. Вертикальный участок соединительных труб от патрубка газового прибора до первого поворота трубы должен быть не менее 0,5 мм. В помещениях с высотой до 2,5 м допускается вертикальный участок в 0,3 м. Общая длина горизонтального участка трубы не более 3 ж, а в существующих зданиях не более 6 м, причем на всем протяжении соединительной трубы должно быть не более трех поворотов. Трубы прокладываются с уклоном не менее 0,01 в сторону газового прибора и только по нежилым помещениям. Дымоходы, как правило, устраиваются во внутренних капитальных стенах зданий. Дымоходы не должны иметь горизонтальных участков, а ниже ввода соединительной трубы в дымоход необходимо устраивать карман глубиной не менее 250 мм с люком для его чистки.

При нормальной работе газовых приборов величина разрежения в месте выхода продуктов сгорания из прерывателя тяги должна составлять 0,4-0,7 мм вод. ст.

в зависимости от типа прибора. При малом разрежении часть продуктов сгорания выходит в помещение, а в отдельных случаях происходит опрокидывание тяги. Сечение дымохода определяется расчетом. Для водонагревателей с тепловой нагрузкой в 20000-25000 ккал/час сечение должно быть не мепее 150 см2.

Для газоснабжения применяются сжиженные углеводородные газы. Сжиженный газ хранится в баллонах, которые, в зависимости от размеров, устанавливаются непосредственно в кухне, в металлич. шкафу снаружи у стены здания или закапываются в землю. В первых двух случаях газ по коротким соединительным трубам поступает непосредственно к газовым приборам, а в последнем - от цистерны, расположенной в грунте, идут подземные внутридворовые газопроводы, транспортирующие газ к одному или нескольким зданиям.

Испытания газопроводов производятся воздухом после наружного осмотра и устранения всех видимых дефектов. Наружные газопроводы - абонентские ответвления - испытываются аналогично городским газопроводам. Внутренняя газовая сеть жилых и обществ, зданий проверяется на прочность и плотность. Испытание на прочность газопроводов низкого давления производится давлением в 1 am. Газопроводы жилых зданий испытываются на плотность давлением в 400 мм вод. ст. с установленным счетчиком и подключенными газовыми приборами.

Газовые приборы

В жилых и общественных зданиях газ используют для приготовления пищи и горячей воды. Основными приборами, которые применяют для газоснабжения зданий, являются плиты, водонагреватели, кипятильники, пищеварочные котлы, духовые шкафы и холодильники. Работа газовых приборов характеризуется следующими показателями: 1) тепловой нагрузкой, или количеством теплоты в газе, которая расходуется прибором, в кВт; 2) производительностью, или количеством полезно используемой теплоты, которая передается нагреваемому телу, в кВт; 3) КПД, представляющим собой отношение производительности к тепловой нагрузке прибора. Номинальной считают такую нагрузку, при которой газовый прибор работает наиболее эффективно, т. е. с наименьшим химическим недожогом газа, наибольшим КПД, и развивает номинальную производительность. При номинальной нагрузке в конструктивных элементах прибора не должно возникать опасных тепловых напряжений, сокращающих срок его службы. Предельной (максимальной) тепловой нагрузкой считают нагрузку, превышающую номинальную на 20%. При этой нагрузке,не должны заметно ухудшаться показатели работы прибора. Газовые приборы, устанавливаемые в жилых и общественных зданиях, работают на низком давлении, их оборудуют эжекционными горелками атмосферного типа. Бытовые газовые плиты изготовляют двух-, трех- и четырехконфорочными с духовыми шкафами и без них. Они состоят из следующих основных частей: корпуса, рабочего тола с конфорочными вкладышами, духового шкафа, газовых горелок (конфорочных - верхних, а также для шкафа), газораспределительного устройства с кранами. Детали бытовых плит изготовляют из термически стойких, коррозионно-устойчивых и долговечных материалов. Поверхность и детали плиты (кроме задней стенки) покрыты белой эмалью. Высота рабочего стола бытовых плит 850 мм, а ширина- не менее 500 мм. Расстояние между центрами соседних конфорок 230 мм. Конфорочные горелки имеют следующие номинальные нагрузки: нормальную мощность 1,9 кВт, повышенную - 2,8 кВт. Четырехконфорочные плиты могут иметь одну горелку повышенной мощности. Номинальная нагрузка горелок должна обеспечивать равномерный разогрев духового шкафа до температуры 285...300 °С не более чем за 25 мин. По действующему ГОСТу КПД конфорочных горелок должен быть не менее 56%, а КПД плит с отводом продуктов сгорания в дымоход - не менее 40%. Содержание оксида углерода в продуктах сгорания при работе горелок с номинальной нагрузкой не должно превышать 0,05 % в пересчете на сухие дымовые газы и избыток воздуха, равный единице (а=1). Отрегулированные горелки должны работать устойчиво, без отрыва и проскока пламени, при изменении теплоты сгорания газа в пределах ±10% и тепловой нагрузке от предельной до 0,2 номинальной. Бытовые газовые плиты оборудуют атмосферными горелками с отводом продуктов сгорания непосредственно в кухню. Часть воздуха, необходимого для горения (первичный воздух), эжектируется газом, вытекающим из сопел горелок; остальная часть (вторичный воздух) поступает к пламени непосредственно из окружающей среды. Воздух к горелкам духового шкафа поступает через специальные щели и отверстия в плите. Продукты сгорания конфорочных горелок проходят через щель между дном посуды и рабочим столом плиты, поднимаются вдоль стенок посуды, обогревая их, и поступают в окружающую атмосферу. Продукты сгорания обогревают духовой шкаф и поступают в кухню через отверстия в боковых стенках или задней стенке плиты. Отвод продуктов сгорания непосредственно в помещение предъявляет высокие требования к конструктивным качествам горелок, которые должны обеспечивать полное сгорание газа. Основными причинами, вызывающими химическую неполноту сгорания газа у конфорочных горелок, являются: а) охлаждающее действие стенок посуды, которое может привести к неполному протеканию химических реакций горения, образованию СО и сажи; б) неудовлетворительное перемешивание газа с первичным воздухом в проточной части эжектора; в) плохая организация подвода вторичного воздуха и отвода продуктов сгорания. Для устранения указанных причин необходимо газогорелочные устройства плиты конструировать так, чтобы были соблюдены следующие условия: а) горелки должны работать с максимальным коэффициентом первичного воздуха, обеспечивающим устойчивое пламя при всех производительностях; б) расположение горелки по отношению к дну посуды должно обеспечивать хорошее омывание продуктами сгорания и исключать возможность соприкосновения внутреннего конуса пламени с ее дном; в) расстояние между дном посуды и горелкой должно быть оптимальным, так как с увеличением этого расстояния возрастает избыток воздуха и понижается КПД горелки, а с уменьшением - растет химическая неполнота сгорания. Величина оптимального расстояния зависит ог тепловой нагрузки, коэффициента первичного - воздуха, размеров конфорочного отверстия и дна посуды. Для горелок с тепловой нагрузкой 1,75...1,9 кВт при диаметре конфорочных отверстий 200...220 мм величина оптимального расстояния равна примерно 20 мм; г) форма профиля проточной части эжекционной трубки должна быть оптимальной; д) обеспечен отвод продуктов сгорания через зазор между дном посуды и рабочим столом (зазор должен быть не менее 8 мм). Чтобы плиты могли работать на газообразном топливе с различной теплотой сгорания, применяют несколько сменных сопел с диаметрами отверстий, соответствующими теплоте сгорания газа и номинальному давлению. Для предотвращения случайного открывания краны всех горелок должны иметь фиксаторы положения закрытия Ручка крана духового шкафа должна отличаться от других ручек по форме или цвету. Стенки духового шкафа должны иметь тепловую изоляцию в виде воздушной прослойки или слоя изоляционного материала, чтобы температура на поверхности плиты не превышала 120 °С. Четырехконфорочная плита ПГУ имеет рабочий стол с четырьмя вертикальными конфорочными горелками, показанными на рис. 19.3.

Рис. 19.3. Атмосферная газовая горелка для бытовой плиты 1 - эжекциоиная трубка. 2 - колпачок, 3 - заслонка для регулирования первичного воздуха, 4 - сопло

Плита имеет жарочный и сушильный шкафы. В дверку жарочного шкафа вмонтировано смотровое стекло. Жарочный шкаф изолирован шлаковатой. Стол плиты закрытый и снабжен прутковыми конфорочными решетками. Духовой шкаф размещен в средней части плиты и обогревается атмосферной горелкой, головка которой выполнена в виде кольцевой трубки. У вертикальной конфорочной горелки отверстия в головке имеют выходные размеры и шаг, предотвращающие слияние язычков пламени. Для распространения пламени по огневым отверстиям стальная штампованная крышка имеет отбортовку, которая располагается над факелами горелки. Она обеспечивает кольцевание пламени, создающее условия для зажигания соседних факелов и обеспечивающее устойчивость горения по отношению к проскоку пламени. Проточные и емкостные водонагреватели представляют собой тепло- обменные аппараты, служащие для местного горячего водоснабжения. У проточных водонагревателей режим приготовления горячей воды соответствует режиму потребления. Они нагревают воду до 50...60 °С и выдают ее через 1...2 мин после включения прибора. Их часто называют быстродействующими. У емкостных водонагревателей режим приготовления воды может не соответствовать режиму ее потребления. Вода в емкостных водонагревателях нагревается до 8О...9О°С. Водонагреватели должны удовлетворять следующим требованиям: 1) КПД их должен быть не ниже 82%. Водонагреватели должны нормально работать при давлении водопроводной воды от 0,05 до 0,6 МПа. Постоянная температура горячей водыдолжна создаваться за 1...2 мин после включения прибора. В емкостных водонагревателях вода нагревается 60... 70 мин. Водонагреватели имеют прерыватели тяги и предохранители от обратной тяги. Температура продуктов сгорания перед тягопрерывателем дол жна быть не ниже 180 °С. Наружную поверхность водонагревателя покрывают белой эмалью; температура поверхности при работе аппарата на номинальной нагрузке не должна превышать температуру окружающего воздуха более чем на 50 °С; 2) водонагреватели должны быть снабжены основной и запальной горелками. Пламя запальной горелки мгновенно зажигает газ на основной горелке. Максимальный расход его через запальную горелку при номинальном давлении равен 35 л/с. Пламя основной горелки должно быть ровным. Высота пламени у проточных водонагревателей не должна превышать 80 мм при номинальной нагрузке и 150 мм при предельной. Горелки должны обеспечивать устойчивое горение газа без отрыва и проскока пламени при изменении тепловой нагрузки от 0,2 до 1,25 номинальной. При работе с предельной нагрузкой содержание оксида углерода СО в продуктах сгорания не должно превышать 0,1% объема сухих продуктов при теоретическом расходе воздуха а=1; 3) каждый водонагреватель должен быть снабжен блокирующими и предохранительными устройствами, которые пропускают газ к основной горелке только при зажженном запальнике и прекращают подачу его, когда запальник гаснет. Проточные водонагреватели оборудованы предохранительными устройствами, благодаря которым основная горелка выключается в случае прекращения разбора горячей воды или при падении давления ее ниже установленного предела. Емкостные водонагреватели оборудованы автоматикой регулирования температуры горячей воды, обеспечивающей отключение основной горелки при нагреве воды выше заданной величины. Проточные водонагреватели состоят из следующих основных частей: 1) теплообменника, включающего огневую камеру, змеевик и калорифер; 2) газовой горелки с запальником; 3) газоотводящего устройства с тягопрерывателем и предохранителем обратной тяги; 4) блокирующих, предохранительных и регулирующих устройств; 5) наружного металлического эмалированного кожуха; 6) водоразборной системы с кранами и душевой сеткой. Автоматический проточный водонагреватель ВПГ, предназначенный для многоточечного разбора воды, показан на рис. 19.5. Номинальная

тепловая «агрузка водонагревателей типа ВПГ составляет 21...23 кВт.

Газовое оборудование требует правильного выбора и установки, которая должна соответствовать принятым нормам. В этом случае оно будет работать правильно. Чтобы выбрать оптимальный тип подобных аппаратов, необходимо рассмотреть классификацию газовых горелок. Существует несколько основных характеристик, по которым отличается это оборудование. горелок будут рассмотрены далее.

Преимущества газового оборудования

Рассматривая характеристики и классификацию газовых горелок, необходимо отметить, что подобное оборудование сегодня очень популярно. Это объясняется массой преимуществ. Газ является одним из доступных видов топлива для населения. Его стоимость остается приемлемой для большинства потребителей. Если рядом с жилищем проходит газовая магистраль, нецелесообразно применять для бытовых нужд иные виды энергии.

Существует множество типов газовых горелок. Они применяются в разных сферах деятельности человечества. Можно подобрать прибор, который будет оптимально соответствовать существующим условиям эксплуатации. Мощность агрегата может быть разной.

Чтобы подобрать оптимальный вариант, нужно рассмотреть подробно классификацию и характеристики горелок. Их устройство довольно простое. Это делает представленное оборудование надежным в процессе эксплуатации. По этому показателю газовые приборы на порядок превосходят грелки на жидком топливе.

Современное оборудование представленного типа производится по инновационным технологиям. Их работа автоматизирована. Это гарантирует высокий комфорт в ходе эксплуатации горелки, отсутствие сбоев и неполадок в работе. Это значительно увеличивает безопасность эксплуатации оборудования.

Особенности горелок

Чтобы выбрать правильный тип оборудования, необходимо рассмотреть общее назначение газовых горелок. Классификация позволяет выделить несколько групп среди всего многообразия оборудования. Газовой горелкой называется прибор, который смешивает кислород и газ, а затем подает эту смесь к отверстию на выходе. При ее воспламенении образуется устойчивый факел.

Как устроены газовые горелки смесь подается по трубопроводам под давлением. Воздух и кислород соединяются в единую субстанцию в специальном устройстве. При ее выходе из системы происходит воспламенение топливной смеси. Образуется постоянное, устойчивое пламя. Такое оборудование применяется для бытовых и промышленных целей. Оно устанавливается в различных котлах.

Сегодня в продаже представлено два основных типа горелок. Их разделяют по принципу приготовления горючего состава. Бывают атмосферные и надувные приборы. Первый тип горелок еще называют инжекторными. Надувные разновидности могут называть вентиляционными.

Инжекторные разновидности практически всегда являются частью отопительного агрегата. Они поставляются с ним в комплекте, входят в стоимость котла. Отдельно продаются надувные горелки. Они являются более эффективными, так как подача воздуха в конструкции проводится при помощи вентилятора.

Системы газовой горелки выполняют 4 функции. Они смешивают газ с воздухом в правильной пропорции, а затем подают их к фронту горения. Также важной функцией аппарата является стабилизация воспламененного факела. Он не должен отклоняться от установленного уровня. Горелка обеспечивает необходимую интенсивность выделения тепла. Поэтому выбор нужно осуществлять, ориентируясь на потребности в мощности оборудования.

Основные отличия

Классификация газовых котлов и горелок выполняется по разным признакам. Подобное оборудование различается по своей мощности. Для этого учитывают особенности эксплуатации горелки. Чем больший объем нужно обогреть, тем мощнее потребуется горелка.

Газовое оборудование отличается способом смешивания воздуха и горючего. От этого зависит показатель КПД оборудования. Наддувные модели эффективнее. Уровень КПД у них выше.

В разных моделях поток смеси неодинаков. Поэтому нужно перед покупкой ознакомиться с основными рабочими характеристиками прибора.

Горелки изготавливают из разных материалов. Чаще всего это сплавы или металлы. Они должны быть соответствующего качества.

Также в конструкцию многих горелок можно вносить определенные изменения, что должно соответствовать инструкции производителя. Выполняются они с помощью комплектующих для регулировки. При покупке на них обращают внимание. Выбор нужно делать в соответствии с личными предпочтениями. Выполнять регулировку должно быть комфортно.

Основные разновидности

Существует классификация газовых горелок по назначению. Они делятся на две группы. Это могут быть специальные или универсальные приборы. К первой категории относятся горелки, которые могут эксплуатироваться в котлах только определенной конструкции. Для прочих печей это оборудование не подойдет. Универсальные горелки отличаются широкой сферой применения. Они монтируются на большинство современных конструкций печей и котлов.

По способу создания топливной смеси выделяют три категории горелок. Кроме газа, в топливной смеси обязательно присутствует кислород. Смешивать эти ингредиенты оборудование может по-разному. Существуют дутьевые, инжекционные и диффузные горелки. В первую категорию входит оборудование, воздух в котором подается способом нагнетания. В инжекционных горелках воздух для создания топливной смеси подается засасыванием. Диффузные конструкции характеризуются естественным притоком воздуха, который поступает из окружающей среды.

В подобном оборудовании газ может подаваться тонкими струйками, поступать под определенным углом к потоку воздуха. Также в некоторых конструкциях применяется технология разделения горючего на множество мелких потоков или их закручивание.

Другие классификации

Рассматривая виды и принцип работы газовых горелок для котлов, следует выделить и другие классификации. Представленное оборудование может отличаться по показателям теплотворности топлива, которое сжигается в агрегате.

В первую группу по этому признаку входят высококалорийные горелки. Их теплота сгорания максимальная. Такое оборудование выделяет много энергии, позволяя обогревать большие объемы. Минимальная теплота сгорания топлива в таком оборудовании составляет 20 МДж/м³. представленная категория оборудования предназначена для работы на природном газе или попутных продуктах нефтяных газообразных субстанций.

Во вторую группу входят горелки средней калорийности. Они предназначены для кокосового газа или его аналогов. Теплота сгорания в таком оборудовании составляет 8-20 МДж/м³.

К низкокалорийным горелкам относятся приборы, теплота сгорания топлива в которых не превышает 8 МДж/м³. Их применяют в процессах сжигания доменного или генераторного газа.

Кроме того, оборудование отличается избыточным давлением. Оно может быть низким, средним и высоким. Последний вариант встречается довольно редко. Избыточное давление таких агрегатов составляет более 30 кПа. Гораздо чаще применяются горелки среднего и низкого давления. Они подходят для высококалорийных газов. Избыточное давление средних горелок составляет 5-30 кПа. Приборы низкого давления характеризуются этим показателем, находящимся на уровне менее 5 кПа.

Локализация пламени

Рассматривая классификации и конструкции газовых горелок, нужно отметить еще один принцип отличия оборудования. Такие приборы могут иметь разную локализацию пламени. Огонь может формироваться в свободном факеле. В некоторых конструкциях пламя локализуется в зернистой, пористой или перфорированной массе. Этот материал не подвержен горению.

Локализация пламени может наблюдаться также в специальном тоннеле или камере сгорания из огнеупорного материала. Существуют конструкции горелок, в которых огонь появляется непосредственно на огнеупорной поверхности.

В зависимости от типа подобного приспособления определяется и сфера применения оборудования. Так, горелки, в которых пламя образуется в огнеупорном тоннеле и свободном факеле, устанавливаются в котлах для теплоносителей (вода, специальные жидкости на основе антифриза, воздух и т. д.).

Если приспособление сжигает газ в пористой массе или на поверхности из огнеупорного материала, они устанавливаются в обогревателях иного типа. Принцип их работы основан на инфракрасном излучении для обогрева.

Зная существующие классификации, можно правильно выбрать тип оборудования для того или иного котла. При этом учитывают условия эксплуатации обогревателя. Правильно выбранная горелка будет работать много лет, не требуя ремонта или замены.

Требования к горелкам

Существующие классификации газовых горелок для котлов отопления позволяют подобрать подходящее оборудование. Нужно также знать основные требования, которые выдвигаются к таким изделиям. Приобретать горелку можно только при наличии у продукта соответствующего сертификата. Основные их типы изготавливают серийно, они должны соответствовать существующим стандартам.

Газ в них должен пропускаться в определенном количестве. Он должен полностью сжигаться. Коэффициент расхода воздуха у большинства видов горелок минимальный. В процессе эксплуатации оборудование должно обеспечить количество выбросов на минимально допустимом уровне.

Рассматривая классификации горелок и основные требования к подобной технике, следует отметить, что уровень шума при работе не должен превышать 85 дБ. Пламя не должно проскакивать, отрывы также недопустимы.

Если система работает по принципу полного предварительного смешения, скорость подачи смеси должна превышать скорость распространения пламени. Также стоит обратить внимание на конструкцию. Она должна быть простой. Это позволяет выполнить при необходимости ревизию или ремонт.

Диффузные горелки

Изучив классификацию газовых горелок для котлов, можно выделить основные три группы представленного оборудования. Одним из популярных видов является изделие диффузного типа. В этом приборе воздух поступает для смешения с газом из окружающей среды. Этот процесс обеспечивается за счет диффузии.

В бытовых приборах часто устанавливают диффузные горелки. Этот тип оборудования позволяет распределить пламя по значительной поверхности. Воздух не поступает в корпус горелки. Он смешивается с газом за пределами оборудования. Поэтому вторым названием диффузных разновидностей является «горелка внешнего смешивания».

Простая конструкция состоит из трубы, в которой высверлены на определенном расстоянии отверстия. Тепловая мощность подобной конструкции небольшая. Горелки диффузного типа предназначены для сжигания природного газа. Они установлены в небольших водонагревателях, которые используются в быту. Более сложные конструкции применяются в промышленном процессе обогрева.

Горелки инжекционные

В классификации газовых горелок важное место принадлежит инжекционным разновидностям. Газовоздушная смесь формируется в этом случае под воздействием струи топлива. Основным элементом конструкции является инжектор. Он всасывает воздух из окружающей среды.

Основными элементами конструкции являются форсунка, регулятор первичного воздуха, а также коллектор и смеситель. Каждый из этих элементов выполняет определенную функцию. Так, форсунка нужна для превращения потенциальной энергии в кинетическую. Регулятор управляет количеством первичного воздуха, который подается в горелку.

Подсос воздуха и разрежение создает инжектор. Конфузор является самой узкой частью смесителя. Он служит для выравнивания струи смеси. Окончательное перемешивание ее ингредиентов происходит в диффузоре. За счет снижения скорости увеличивается ее давление.

Коллектор распределяет смесь по всем отверстиям системы. Форма этой детали и расстояние между отверстиями зависят от назначения оборудования.

Горелки дутьевые

В классификации газовых горелок самыми экономными являются дутьевые конструкции. Они отличаются возможностью плавно регулировать уровень мощности. Это позволяет увеличить КПД. Газ в этом случае расходуется рациональнее. Такое оборудование работает довольно шумно, но для потребителей одним из основных требований является экономичность горелки. Поэтому именно дутьевые разновидности сегодня наиболее популярны.

Существует три вида дутьевых горелок. В первой группе применяется полное предварительное смешивание газа и воздуха. Второй тип дутьевых горелок обладает частичным предварительным смешиванием. Третьей категорией является оборудование без предварительного смешивания.

Рассмотрев классификацию газовых горелок, можно подобрать оптимальный тип оборудования для своих нужд.

Подразделяют на два основных типа:

а) газовые смесеобразователи общего назначения, когда их можно устанавливать на большинстве печей, топок и других огневых установках;

б) горелки специального назначения, когда их устанавливают только в определенной конструкции печи или огневой установки и практически исключается установка их на других конструкциях.

2. В зависимости от теплотворности сжигаемого газообразнога продукта горелки можно подразделить на следующие типы:

  • для сжигания газов низкой теплотворности (Q* = 8 МДж/м3);
  • для сжигания газов средней теплотворности = 8—20 МДж/м3);
  • для сжигания газов высокой теплотворности ((?g = 20 МДж/м3).

3. По способу подвода воздуха, необходимого на горение, горелки можно подразделить на следующие типы:

  • диффузионные, когда воздух притекает к пламени из окружающей атмосферы;
  • инжекционные, когда воздух засасывается в горелку;
  • дутьевые, когда воздух в горелку нагнетается.

4. В зависимости от давления газы, поступающие в горелку, можно подразделять на следующие типы:

  • низкого давления (до 0,005 МПа);
  • среднего давления (от 0,005 до 0,3 МПа);
  • высокого давления (выше 0,3 МПа).

5. Газовые горелки могут быть комбинированными, если в них предусмотрена возможность сжигания дополнительного вида топлива.

60. Расчет продуктов сгорания.

Состав продуктов сгорания 1 г моля серы согласно реакции S Oj SOj: кислорода 1 7 - 10 7 г-моль, азота 6 42 г-моль, сернистого газа 1 г. мель. Принимаем температуру взрыва 1800 К. Состав продуктов сгорания подсчитывается отдельно для каждого компонента смеси и потом суммируется. Состав продуктов сгорания с учетом диссоциации должен определяться для случая химического равновесия. Такой состав называется равновесным. Для его расчета необходимо составить и решить систему уравнений химического равновесия. С математической точки зрения это будет система нелинейных алгебраических уравнений, которая может состоять (в зависимости от числа учитываемых компонентов) из нескольких десятков уравнений. Полный и подробный расчет диссоциированных продуктов сгорания сложен и трудоемок. В настоящее время выполнение расчета облегчается при использовании ЭВМ . Состав продуктов сгорания зависит от состава горящего вещества, условий, в которых происходит горение, и главным образом полноты сгорания. В продуктах сгорания могут содержаться многие неорганические вещества (углерод , азот , водород , сера , фосфор и др.) и их окислы, а также спирты, кетоны , альдегиды и другие органические соединения. Образующийся в процессе горения дым состоит из мельчайших твердых частиц размером от 0 01 до 1 мкм. Состав продуктов сгорания зависит от полноты сгорания топлива. При полном его сгорании, как было указано выше, продукты сгорания состоят из углекислоты СО2, сернистого ангидрида SO2 , водяных паров Н О, азота N2 и кислорода О2, не использованного при горении, так называемого избыточного кислорода. Состав продуктов сгорания определяется с помощью газоанализаторов . Состав продуктов сгорания при работе таких двигателей определяется составом компонентов топлива, температурой сгорания, процессами диссоциации и рекомбинации молекул. Количество продуктов сгорания зависит от мощности (тяги) двигательных установок.


Объем продуктов сгорания в газовом тракте, работающем под разрежением, определяют с учетом нарастания избытка воздуха по тракту. Расчеты проводят для каждого газохода при среднем значении в нем коэффициента избытка воздуха, так как все расчеты конвективного теплообмена выполняют при средней скорости газового потока. Рост объема продуктов сгорания вызывает уменьшение их парциального давления. Это непосредственно сказывается на теплоотдаче излучением трехатомных газов и водяных паров.

При производстве земляных работ для ремонта газопроводов необходимо оградить место работы по всему его периметру, в дневное время установить в 5 м от ограждения со стороны движения транспорта предупредительный знак, в ночное время прикрепить на ограждение на высоте 1,5 м сигнальный фонарь с красной линзой, место работы осветить электрическими лампочками или прожекторами.

Кроме перечисленных основных положений при работах, связанных с эксплуатацией газопровода, следует выполнять общие правила техники безопасности при производстве земляных, изоляционных, сварочных и транспортных работ.

Газовая горелка - устройство, обеспечивающее подачу определенного количества горючего газа и окислителя (воздуха или кислорода), создание условий смешения их, транспортировку образовавшейся смеси к месту сжигания и сгорания газа. Есть горелки, у которых к месту сгорания подается только газ или газ и воздух, но без их предварительного смешения внутри горелки.

Требования, предъявляемые к горелкам:

· создание условий для полного сгорания газа с минимальными избытком воздуха и выходом вредных веществ в продуктах сгорания;

· обеспечение необходимой теплопередачи и максимального использования теплоты газового топлива;

· наличие пределов регулирования, не меньших чем требуемое изменение тепловой мощности агрегата;

· отсутствие сильного шума, уровень которого не должен превышать 85 дБ;

· простота конструкции, удобство ремонта и безопасность эксплуатации;

· возможность применения автоматики регулирования и безопасности;

· соответствие современным требованиям промышленной эстетики.

Основные функции газовых горелок: подача газа и воздуха к фронту горения газа, смесеобразование, стабилизация фронта воспламенения, обеспечение требуемой интенсивности процесса горения газа.

По методу сжигания газа все горелки можно разделить на три группы:

· без предварительного смешения газа с воздухом - диффузионные;

· с неполным предварительным смешением газа с воздухом - диффузионно-кинетические;

· с полным предварительным смешением газа с воздухом - кинетические.

Кроме того, горелки можно классифицировать по способу подачи воздуха, расположению горелки в топочном пространстве, излучающей способности горелки, давлению газа.

Широкое распространение имеет классификация горелок по способу подачи воздуха. По этому признаку горелки подразделяют следующим образом:

· бездутьевые, у которых воздух поступает в топку за счет разрежения в ней;

· инжекционные, в которых воздух засасывается за счет энергии струи газа;

· дутьевые, у которых воздух подается в горелку или топку с помощью вентилятора.

Горелки могут работать при различных давлениях газа: низком -- до 5000 Па, среднем -- от 5000 Па до 0,3 МПа и высоком -- более 0,3 МПа. Наибольшее распространение имеют горелки, работающие на низком и среднем давлениях газа.

Важная характеристика горелки -- ее тепловая мощность, кДж/ч:

где QН -- низшая теплотворная способность газа, кДж/м3; VЧ -- часовой расход газа горелкой, м3/ч.

Различают максимальную, минимальную и номинальную тепловые мощности газовых горелок. Максимальная тепловая мощность достигается при длительной работе горелки с большим расходом газа и без отрыва пламени. Минимальная тепловая мощность возникает при устойчивой работе горелки при наименьших расходах газа без проскока пламени. Номинальная тепловая мощность горелки соответствует режиму работы с номинальным расходом газа, т. е. расходу, обеспечивающему наибольший КПД при наибольшей полноте сжигания газа. В паспортах горелок указывают номинальную тепловую мощность.

Максимальная тепловая мощность горелки должна превышать номинальную не более чем на 20 %. Если номинальная тепловая мощность горелки по паспорту 10000 кДж/ч, то максимальная должна быть 1 2 000 кДж/ч.

Еще одна важная характеристика горелки -- предел регулирования тепловой мощности п = 2 ... 5:

n = Qr min / Qr max,

где Qr min - минимальная тепловая мощность горелки; Qr max - максимальная тепловая мощность горелки.

В эксплуатации находится большое количество горелок различных конструкций. Общие требования для всех горелок: обеспечение полноты сгорания газа, устойчивость при изменениях тепловой мощности, надежность в эксплуатации, компактность, удобство при обслуживании.

Существует много разных классификаций газогорелочных устройств, которые мы можем видеть в Таблице 1.

Таблица 1. Классификация газовых горелок

Классификационный признак

Характеристика классификационного признака

Способ подачи компонентов

Подача воздуха за счет свободной конвекции

Подача воздуха за счет разрежения в рабочем пространстве

Инжекция воздуха газом

Принудительная подача воздуха от постороннего источника

Принудительная подача воздуха от встроенного вентилятора (блочные горелки)

Принудительная подача воздуха за счет давления газа (турбинные горелки)

Инжекция газа воздухом (принудительная подача воздуха, инжектирующего газ)

Принудительная подача газовоздушной смеси от постороннего источника

Степень подготовки горючей смеси

Без предварительного смешения

С частичной подачей первичного воздуха

С неполным предварительным смешением

С полным предварительным смешением

Скорость истечения продуктов сгорания, м/с

До 20 (низкая)

Св. 20 до 70 (средняя)

Св. 70 (высокая, скоростные горелки)

Характер потока, истекающего из горелки

Прямоточный

Закрученный неразомкнутый

Закрученный разомкнутый

Номинальное давление газа перед горелкой, Па

До 5000 (низкое)

Среднее давление (до критического перепада давлений)

Высокое давление (критический или сверхкритический перепад давлений)

Возможность регулирования характеристик факела

С нерегулируемыми характеристиками факела

С регулируемыми характеристиками факела

Необходимость регулирования коэффициента избытка воздуха

С нерегулируемым (минимальным или оптимальным) коэффициентом избытка воздуха

С регулируемым (переменным или повышенным) коэффициентом избытка воздуха

Локализация зоны горения

В огнеупорном туннеле или в камере горения горелки

Н поверхности катализатора, в слое катализатора

В зернистой огнеупорной массе

На керамических или металлических насадках

В камере горения агрегата или в открытом пространстве

Возможность использования тепла продуктов сгорания

Без подогрева воздуха и газа

С подогревом в автономном рекуператоре или регенераторе

С подогревом воздуха во встроенном рекуператоре или регенераторе

С подогревом воздуха и газа

Степень автоматизации

С ручным управлением

Полуавтоматические