Подача фрезы. Выбор рациональных режимов фрезерования. Фрезерование в одной плоскости

ВЫБОР РЕЖИМА РЕЗАНИЯ ПРИ ФРЕЗЕРОВАНИИ

§ 78. УСЛОВИЯ, ОПРЕДЕЛЯЮЩИЕ ВЫБОР РЕЖИМА РЕЗАНИЯ

Понятие о наивыгоднейшем режиме резания

Наивыгоднейшим следует считать такой режим резания при работе на фрезерном станке, при котором наиболее удачно сочетаются скорость резания, подача и глубина срезаемого слоя, обеспечивающие в данных конкретных условиях (т. е. с учетом наилучшего использования режущих свойств инструмента, скоростных и мощностных возможностей станка) наибольшую производительность труда и наименьшую стоимость операции при соблюдении заданных технических условий в отношении точности и чистоты обработки.
Научно-исследовательским институтом труда Государственного комитета Совета Министров СССР по вопросам труда и заработной платы разработаны при участии крупнейших отечественных ученых с учетом практического применения в производственных условиях режимы резания при фрезеровании инструментами из быстрорежущей стали и твердых сплавов. Они могут служить в качестве исходных данных при назначении скоростей резания и минутных подач.
Эти нормативы имеются на каждом заводе и служат руководящим материалом для разработки технологического процесса и составления операционных карт, подобно приведенной на стр. 204-205. Однако приведенные в них скорости резания и минутные подачи не являются предельными и в ряде случаев могут перекрываться фрезеровщиками, если применять более производительные инструменты или работать на более мощных и жестких станках.
С другой стороны, молодые, т. е. начинающие и не имеющие достаточного опыта, фрезеровщики не всегда могут работать на предельных режимах резания, поэтому для них предусмотрены в «Справочнике молодого фрезеровщика» менее жесткие режимы резания, начиная с которых, необходимо, по мере повышения квалификации, переходить к более жестким.
Чтобы самому внедрять новые режимы, надо знать порядок и последовательность установления режимов фрезерования.

Материал режущей части фрезы

Решающим фактором, определяющим уровень режима резания, является материал режущей части фрезы. Как упоминалось выше, применение фрез с пластинками из твердого сплава позволяет работать на больших скоростях резания и больших подачах по сравнению с фрезами из быстрорежущей стали; как увидим далее, твердосплавные фрезы дают возможность повышения производительности в два-три раза против быстрорежущих. Поэтому твердосплавные фрезы целесообразно применять почти на всех видах фрезерной обработки; препятствием к их применению может явиться недостаточная мощность оборудования или специфические свойства материала обрабатываемой заготовки.
Однако в ряде случаев применение для режущей части фрез углеродистых, легированных инструментальных и быстрорежущих сталей является рациональным, особенно когда чистота обработанной поверхности и точность полученной поверхности детали имеют большее значение, чем скорость выполнения работы.

Геометрические параметры режущей части

Не менее важным фактором, влияющим на выбор режимов резания, являются геометрические параметры режущей части фрезы (режущих углов, размеров и формы зуба), что часто называют геометрией фрезы . Ранее, в § 7, рассмотрены значение и влияние каждого из элементов геометрии зуба фрезы в процессе резания; здесь же рассмотрим рекомендуемые геометрические параметры режущей части фрез из быстрорежущей стали Р18 и с пластинками твердого сплава.
В табл. 35 и 36 приведены рекомендуемые значения геометрических параметров цилиндрических, торцовых, дисковых, отрезных, концевых и фасонных фрез из быстрорежущей стали.

Таблица 35

Геометрические параметры режущей части фрез из быстрорежущей стали Р18

I. Передние углы


II. Задние углы


III. Углы в плане и переходной кромки


Примечания. 1. У фрез цилиндрических с углом наклона зубьев свыше 30° передний угол γ при обработке стали σ b меньше 60 кГ/мм 2 берется равным 15°.
2. У фасонных фрез с передним углом у больше 0° необходима коррекция контура при обработке точных профилей.
3. При обработке жаропрочных сталей торцовыми фрезами брать верхние значения передних углов, концевыми и цилиндрическими - нижние и средние.
4. На задней поверхности фрез при заточке оставлять круглошлифованную ленточку шириной не более 0,1 мм . Зубья у фрез шлицевых (прорезных) и отрезных (круглых пил) затачиваются без оставления ленточки.


В табл. 37 - 40 приведены рекомендуемые значения передних и задних углов, главного, вспомогательного и переходного углов в плане, углов наклона режущей кромки и винтовых канавок, радиуса при вершине торцовых, цилиндрических, концевых и дисковых фрез с твердосплавными пластинами.
Фрезы, применяемые для обработки большинства заготовок, обычно поставляются инструментальными заводами с геометрическими параметрами, соответствующими ГОСТ, и фрезеровщику в отличие от токаря и строгальщика, почти невозможно изменять путем заточки режущие углы фрез. Вследствие этого приведенные в табл. 35 - 40 геометрические параметры режущей части фрез помогут фрезеровщику правильно выбрать соответствующую данной обработке фрезу из имеющихся в инсрументальной кладовой учебного и производственного цеха стандартных фрез. Однако основное назначение этих таблиц заключается в рекомендациях в том случае, если фрезеровщик захочет сам заказать инструментальному отделу стандартные или специальные фрезы с оптимальными для данной обработки геометрическими параметрами.

Таблица 37

Геометрические параметры режущей части торцовых фрез с пластинками из твердого сплава



Примечание . Малые углы в плане φ = 15 - 30° следует применять, при обработке на жестких станках для черновых проходов с малыми глубинами резания или чистовых проходов с невысокими требованиями чистоты и точности к обработанной поверхности.

Таблица 38

Геометрические параметры режущей части цилиндрических фрез с винтовыми пластинками из твердого сплава


Примечание . На задней поверхности зуба вдоль режущей кромки допускается ленточка шириной не более 0,1 мм .

Таблица 39

Геометрические параметры режущей части концевых фрез с пластинками из твердого сплава при обработке конструкционных углеродистых и легированных сталей



* При малой жесткости системы станок - приспособление - инструмент - деталь и при больших сечениях стружки (В больше D ; t больше 0,5D ), а также при работе с низкими скоростями резания при недостаточном числе оборотов шпинделя (v меньше 100 м/мин ) передний угол γ назначается положительным + от 0 до +8°.
** Большие значения для мягких сталей, меньшие - для твердых сталей.

Ширина и глубина фрезерования

Ширина фрезерования задается в чертеже детали. В случае обработки нескольких заготовок, закрепленных параллельно в одном зажимном приспособлении, ширина фрезерования равна ширине всех заготовок. В случае обработки наборами фрез ширина фрезерования равна суммарной ширине всех сопряженных поверхностей.
Глубина фрезерования (глубина резания, толщина срезаемого слоя) дается как расстояние между обрабатываемой и обработанной поверхностями. В целях сокращения времени на обработку рекомендуется выполнять фрезерование в один проход. При повышенных требованиях к точности и чистоте обработанной поверхности фрезерование ведется в два перехода - черновой и чистовой. В отдельных случаях, при снятии больших припусков или при фрезеровании на станках с недостаточной мощностью, возможна обработка в два черновых прохода.

Таблица 40

Геометрические параметры режущей части дисковых фрез с пластинками из твердого сплава



При фрезеровании стальных поковок, стальных и чугунных отливок, покрытых окалиной, литейной коркой или загрязненных формовочным песком, глубина фрезерования должна быть больше толщины загрязненного слоя, чтобы зубья фрезы не оставляли на обработанной поверхности черновин, так как скольжение по корке отрицательно действует на фрезу, ускоряя износ режущей кромки.
Для наиболее часто встречающихся случаев фрезерования рекомендуется черновую обработку производить по стали с глубиной резания 3-5 мм , а по стальному и чугунному литью - с глубиной резания 5-7 мм . Для чистового фрезерования берут глубину резания 0,5-1,0 мм .

Диаметр фрезы

Диаметр фрезы выбирают в основном в зависимости от ширины фрезерования В и глубины резания t . В табл. 41 приведены данные для выбора цилиндрических фрез, в табл. 42 - торцовых фрез и в табл. 43 - дисковых фрез.


* Применять сборные составные фрезы по ГОСТ 1979-52.



Рассмотрим влияние диаметра фрезы на производительность фрезерования.
Диаметр цилиндрической фрезы влияет на толщину среза : чем больше диаметр фрезы D тем тоньше получается срез; при одной и той же подаче s зуб и глубине фрезерования t .
На рис. 327 показан срез, получающийся при одинаковых глубине фрезерования t и подаче s зуб, но при разных диаметрах фрез. Срез, получающийся при большем диаметре фрезы (рис. 327, а), имеет меньшую толщину, чем срез при меньшем; диаметре фрезы (рис. 327, б).


Так как удельное давление возрастает с уменьшением толщины срезаемого слоя а наиб (см. табл. 38), выгоднее работать с более толстыми срезами, т. е. при прочих равных условиях при меньшем диаметре фрезы.
Диаметр фрезы влияет на величину пути , который должна пройти фреза для одного прохода.
На рис. 328 показан путь, который должна пройти фреза при обработке детали длиной L ; на рис. 329 - путь, который должна пройти торцовая фреза при несимметричном фрезеровании заготовки длиной L ; на рис. 330 - путь, который должна пройти тортовая фреза при симметричном фрезеровании заготовки длиной L .

Величина врезания l (путь врезания):
при работе цилиндрическими, дисковыми, отрезными и фасонными фрезами зависит от диаметра фрезы D глубины фрезерования t и выражается формулой

при работе торцовыми и концевыми фрезами при несимметричном фрезеровании зависит от диаметра фрезы D ширины фрезерования В и выражается формулой

при работе торцовыми фрезами при симметричном фрезеровании зависит от диаметра фрезы D ширины фрезерования В и выражается формулой

Величина перебега l 1 выбирается в зависимости от диаметра фрезы в пределах 2-5 мм .
Следовательно, для уменьшения пути врезания и перебега фрезы, т. е. для сокращения холостого хода станка, целесообразно выбирать меньший диаметр фрезы.
В конце книги в приложениях 2 и 3, даны таблицы значений пути врезания и перебега фрез.
Диаметр фрезы влияет на величину крутящего момента : чем меньше диаметр фрезы, тем меньший крутящий момент надо сообщить шпинделю станка.
Таким образом, выбор фрезы с меньшим диаметром является, казалось бы, более целесообразным. Однако с уменьшением диаметра фрезы приходится выбирать более тонкую, т. е. менее жесткую фрезерную оправку, поэтому приходится уменьшать нагрузку на оправку, т. е. уменьшать сечение срезаемого слоя.

Подача

Подача при черновой обработке зависит от обрабатываемого материала, материала режущей части фрезы, мощности привода станка, жесткости системы станок - приспособление - инструмент - деталь, размеров обработки и углов заточки фрезы.
Подача при чистовой обработке зависит от класса чистоты поверхности, обозначенной на чертеже детали.
Основной исходной величиной при выборе подачи для чернового фрезерования является подача s зуб.
Для торцовых фрез на выбор подачи s зуб оказывает способ установки фрезы относительно заготовки, что обусловливает величину угла встречи зуба фрезы с заготовкой и толщину срезаемой стружки при входе и выходе зуба фрезы из контакта с заготовкой. Установлено, что для торцовой твердосплавной фрезы наиболее благоприятные условия врезания зуба в заготовку достигаются при расположении фрезы относительно заготовки, как на рис. 324, в, т. е. при смещении фрезы относительно заготовки на величину С = (0,03 - 0,05)D . Такое смещение оси фрезы дает возможность увеличить подачу на зуб против подачи при симметричном фрезеровании (рис. 324, а) чугуна и стали в два раза и более.
В табл. 44 приводятся рекомендуемые подачи при черновом фрезеровании твердосплавными торцовыми фрезами для этих двух случаев.


Примечания. 1. Приведенные значения черновых подач рассчитаны для работы стандартными фрезами. При работе нестандартными фрезами с увеличенным числом зубьев значения подач следует уменьшать на 15 - 25%.
2. В первоначальный период работы фрезы до износа, равного 0,2-0,3 мм , чистота обработанной поверхности при чистовом фрезеровании снижается примерно на один класс.


Примечание. Большие подачи брать для меньших глубины резания и ширины обработки, меньшие - для больших глубины и ширины обработки.


Примечание. Подачи даны для жесткой системы станок - приспособление - инструмент - деталь.

При торцовом фрезеровании твердосплавными фрезами на величину подачи влияет также главный угол в плане φ. Подачи, приведенные в табл. 44, рассчитаны на фрезы с φ = 60 - 45°. Уменьшение угла в плане φ до 30° позволяет увеличить подачу в 1,5 раза, а увеличение угла φ до 90° требует снижения подачи на 30%.
Подачи при чистовой обработке твердосплавными фрезами, приведенные в табл. 44, даются на один оборот фрезы, так как подачи на один зуб получаются слишком малыми. Подачи даются в зависимости от класса чистоты обработанной поверхности по ГОСТ 2789-59.
В табл. 45 приведены рекомендуемые подачи на один зуб фрезы при черновом фрезеровании плоскостей цилиндрическими, торцовыми и дисковыми трехсторонними фрезами из быстрорежущей стали Р18.
В табл. 46 приведены подачи при чистовом фрезеровании плоскостей цилиндрическими фрезами из быстрорежущей стали Р18, а в табл. 47 - при чистовом фрезеровании плоскостей торцовыми и дисковыми трехсторонними фрезами из быстрорежущей стали Р18. Ввиду малых значений подач на один зуб фрезы, получающихся при чистовом фрезеровании, в табл. 46 и 47 приводятся подачи на один оборот фрезы.
Следует иметь в виду, что работа с подачами, указанными в табл. 44-47, ставит непременным условием наличие минимального биения зубьев фрезы (см. табл. 50).


Примечание. Подачи даны для жесткой системы станок - приспособление- инструмент - деталь при обработке фрезами со вспомогательным углом в плане φ 1 = 2°; для фрез с φ 1 = 0 подачи можно увеличить на 50 - 80%.

Одним из способов отделки материалов является фрезерование. Оно используется для обработки металлических и неметаллических заготовок. Рабочий процесс контролируется с помощью режимов резания.

Суть процесса

Фрезерование осуществляется с целью глубокой черновой и чистовой обработки, формирования определённого профиля поверхности (пазы, канавки), нарезания зубьев на зубчатых колесах, корректировки формы, художественного вытачивания узоров и надписей.

Рабочий инструмент - фреза - совершает главное вращающее движение. Вспомогательным является поступательная подача заготовки относительно ее хода. Этот процесс имеет прерывистый характер. Его важнейшая особенность, которая отличает от точения и сверления - тот факт, что каждый зуб работает отдельно. В связи с этим, для него характерно наличие ударных нагрузок. Уменьшить их влияние возможно с учетом рациональной оценки ситуации и подбора режимов.

Основные понятия о работе фрезерных станков

В зависимости от способа расположения шпинделя и крепления фрезы в нем, от видов осуществляемых действий и от способов управления, выделяют основные типы фрезеровального оборудования:

  • горизонтальные;
  • вертикальные;
  • универсальные;
  • фрезерные станки с ЧПУ.

Основные узлы вертикально-фрезерного станка:

  1. Станина, в которой размещается коробка скоростей, регулирующая вращение вертикально установленного шпинделя и закрепленной на нем фрезы.
  2. Стол, включающий в себя консоль с поперечными полозками для крепления и перемещения заготовки и коробку подач, регулирующую движения подачи.

В горизонтально-фрезерных станках инструмент закрепляется горизонтально. А универсальные имеют несколько разновидностей.

Существует универсальное горизонтальное оборудование, для которого характерно наличие оборотности стола и, тем самым, расширение спектра возможных выполняемых работ. Кроме того, имеется широкоуниверсальное, имеющее в своем строении оба шпинделя и позволяющее осуществлять все виды фрезерования.

С ЧПУ отличаются наличием программного обеспечения и компьютерного управления. Они предназначены для художественной обработки заготовок, в том числе в 3D-формате.

Классификация фрез

Фрезы - это приспособления для резания. Основные физические параметры, с помощью которых они оцениваются: высота, диаметр, величины фаски и затылования, окружной шаг. Существует их огромное разнообразие, распределяющиеся по различным признакам:

  • по типу поверхностей, которые обрабатываются (для дерева, пластика, стали, цветных металлов и др);
  • по направлению движения вращения - праворежущие и леворежущие;
  • в зависимости от конструкционных особенностей - цельные, напайные, складные (имеют вставные ножи), сварные;
  • по форме: конические, цилиндрические, дисковые;
  • в зависимости от условий работы и требований к режущей части, могут изготавливаться из различных материалов. К ним относятся: углеродистая инструментальная и быстрорежущая сталь (легированная, с повышенным содержанием вольфрама), твердый сплав (прочный - для черновой обработки, износостойкий - для чистовой). Распространены варианты, когда корпус изготовлен из углеродистой или быстрорежущей стали, а ножи - вставные твердосплавные;
  • в зависимости от назначения: цилиндрические, торцевые, концевые, прорезные, отрезные, фасонные.

Наиболее информативные признаки: материал режущей кромки и назначение.

Виды фрез для плоских поверхностей

С целью снятия слоев материала на горизонтальных, вертикальных или наклонных плоскостях, используются цилиндрические и торцевые фрезы.

Инструмент первого вида может быть цельным либо с насадными ножами. Большие цельные фрезеровальные насадки предназначены для черновой обработки, а малые - для чистовой. Вставные ножи для складных режущих головок могут быть изготовлены из быстрорежущей стали либо оборудованы пластинками из твердых сплавов. Твердосплавные фрезы имеют большую производительность работы, чем сделанные из легированного стального сплава.

Торцевая применяется для удлиненных плоскостей, ее зубья распределяются на торцевой поверхности. Большие складные используются для широких плоскостей. Кстати, для снятия стружки со сложно обрабатываемых тугоплавких металлов обязательно наличие твердосплавных ножей. Для применения этих групп фрезеровальных приспособлений нужна значительная ширина и длина изделия.

Виды инструментов для художественного фрезерования

Для придания материалу определенного профиля, нанесения узора, формирования нешироких углублений применяются концевые и дисковые фрезеровальные насадки.

Концевая или распространена для вырезания пазов, узких и криволинейных плоскостей. Все они - цельные или сварные, режущая часть из быстрорежущей легированной стали, может быть наплавлен твердосплав, а корпус сделан из углеродистой стали. Существуют малозаходные (1-3 спирали) и многозаходные (4 и больше). Используются для станков с ЧПУ.

Дисковая - это также фреза пазовая. Она применима для канавок, пазов, нарезания зубов на зубчатых колесах.

Художественное фрезерование осуществляется на древесине, металле, ПВХ.

Виды фрез для обработки кромок

Снятие стружки с углов, придание им рациональной формы, моделирование, разделение заготовки на части можно реализовывать с помощью шлицевых, угловых и фасонных фрезеровальных насадок:

  1. Отрезная и шлицевая имеет то же назначение, что и дисковая, однако чаще используются для надрезов и отделения лишних частей материала.
  2. Угловая необходима для кромок деталей и углов. Существуют одноугловые (лишь одна режущая часть) и двухугловые (режущими являются обе конические поверхности).
  3. Фасонная используется для сложных конструкций. Может быть полукруглой или вогнутой. Часто применяется для нарезания профиля метчиков, зенкеров,

Практически для всех типов возможна цельная стальная конструкция либо складная, с наличием вставных твердосплавных ножей. Твердосплавные фрезы имеют качественно более высокие показатели работы и ее продолжительности для инструмента в целом.

Классификация видов фрезерования

Существует несколько классификационных признаков, по которым разделяют виды фрезерования:

  • по способу расположения шпинделя и фрезы, соответственно, на горизонтальное и вертикальное;
  • по направлению движения, на встречное и попутное;
  • в зависимости от используемого инструмента, на цилиндрическое, торцевое, фасонное, концевое.

Цилиндрическая обработка применима для горизонтальных плоскостей, осуществляется с помощью соответствующих фрез на горизонтальных станках.

Концевая отделка обеспечивает формирование необходимого профиля криволинейным канавкам, сверлам и приборам.

Фасонная обработка осуществляется для поверхностей со сложной конфигурацией: углов, кромок, пазов, нарезания зубьев для зубчатых колес.

Вне зависимости от вида осуществляемых работ и обрабатываемых материалов, результат должен отличаться высокой гладкостью финишного слоя, отсутствием зазубрин, точностью отделки. С целью получения чистой обработанной поверхности важно контролировать величины подач заготовки по отношению к инструменту.

Встречное и попутное фрезерование

Когда выполняется фрезерование металла встречного типа - заготовка подается навстречу вращательным движениям насадки. При этом зубья постепенно врезаются в обрабатываемый метал, нагрузка увеличивается прямопропорционально и равномерно. Однако перед врезанием зуба в деталь, он некоторое время скользит, образовывая наклеп. Это явление ускоряет выход фрезы из рабочего состояния. Используется при черновой обработке.

При выполнении попутного типа - заготовка подается по ходу вращательных движений инструмента. Зубья работают ударно под большими на 10% ниже, чем при встречном фрезеровании. Осуществляется при чистовой обработке деталей.

Основные понятие о фрезерных работах на станках с ЧПУ

Они характеризуются высокой степенью автоматизации, точностью рабочего процесса, высокой продуктивностью. Фрезерование на станке с ЧПУ осуществляется чаще всего с помощью торцевых или концевых фрез.

Последние - наиболее широко используемые. При этом, в зависимости от обрабатываемого материала, соответствующего типа образующей стружки, заданных параметров программного обеспечения, используются разные концевые фрезы. Они классифицируются по числу заходов спиралей, которые обеспечивают наличие режущих кромок и канавный отвод стружки.

Материалы с широкой стружкой целесообразно фрезеровать с помощью инструментов малого количества заходов. Для твердых металлов с характерной стружкой излома необходимо выбирать фрезеровальные приспособления с большим количеством спиралей.

Использование фрез для станков с ЧПУ

Малозаходные фрезы для ЧПУ могут иметь от одной до трех режущих кромок. Они используются для дерева, пластмассы, композитов и мягких податливых металлов, требующих быстрого отвода широкой стружки. Применяются для черновой обработки заготовок, к которым не ставятся высокие требования. Для данного инструмента характрена небольшая производительность, невысокая жесткость.

С помощью однозаходных осуществляется художественное фрезерование алюминия.

Широко используемыми являются двух- и трехзаходные концевые. Они обеспечивают жесткость более высоких значений, качественный отвод стружки, позволяют работать с металлами средней твердости (например, со сталью).

Многозаходные фрезы для ЧПУ имеют более 4-х режущих кромок. Применяются для металлов средней и высокой твердости, для которых характерна мелкая стружка и высокое сопротивление. Им свойствена значительная производительность, они актуальны для чистовой и получистовой обработки и не рассчитаны на работу с мягкими материалами.

С целью правильного выбора инструмента для станков с ЧПУ важно учитывать режим резания при фрезеровании, а также все характеристики обрабатываемой поверхности.

Режимы резания

Для обеспечения нужного качества фрезерованного слоя важно правильно определить и поддерживать необходимые технические параметры. Основными показателями, описывающими и регулирующими фрезеровочный процесс, являются режимы работы.

Расчет при фрезеровании производится с учетом основных элементов:

  1. Глубина (t, мм) - толщина металлического шара, который снимается за один рабочих ход. Выбирают ее с учетом припуска на обработку. Черновые работы осуществляются за один проход. Если припуск составляет более 5 мм, то фрезерование проводят в несколько проходов, при этом на последний оставляют около 1 мм.
  2. Ширина (B, мм) - ширина обрабатываемой поверхности в направлении, перпендикулярном движению подачи.
  3. Подача (S) - длина перемещения заготовки относительно оси инструмента.

Выделяют несколько взаимосвязанных понятий:

  • Подача на один зуб (S z , мм/зуб) - изменение положения детали при повороте фрезы на расстояние от одного рабочего зуба к следующему.
  • Подача на один оборот (S об, мм/об) - перемещение конструкции при одном полном обороте фрезеровальной насадки.
  • Подача за одну минуту (S мин, мм/мин) - важный режим резания при фрезеровании.

Их взаимосвязь устанавливается математематически:

S мин =S об *n= S z *z*n,

где z - количество зубьев;

n - частота вращения шпинделя, мин -1 .

На величину подачи также влияют физические и технологические свойства обрабатываемой площади, прочность инструмента и рабочие характеристики механизма подач.

Расчет скорости резания

В качестве номинального расчетного параметра принимают степень быстрого оборота шпинделя. Фактическая скорость V, м/мин зависит от диаметра фрезы и частоты ее вращающихся движений:

Частота вращения фрезерного инструмента определяется:

n=(1000*V)/(π*D)

Имея информацию о минутной подаче, можно определить необходимое время для заготовки c длиной L:

Расчет режимов резания при фрезеровании и их установку актуально осуществлять перед наладкой станка. Установление рациональных заданных параметров, с учетом характеристик инструмента и материала детали, обеспечивает высокую продуктивность работ.

Невозможно идеально подобрать режим резания при фрезеровании, однако можно руководствоваться основными принципами:

  1. Желательно, чтобы диаметр фрезы соответствовал глубине обработки. Это обеспечит очищение поверхности за один проход. Тут основной фактор - материал. Для слишком мягких этот принцип не действует - существует риск снятия стружки, толщиной большей, чем необходимо.
  2. Ударные процессы и вибрации неминуемы. В связи с этим, увеличение значений подачи ведет к снижению скорости. Оптимально начинать работу с подачи на зуб, равной 0,15 мм/зуб, а в процессе - регулировать.
  3. Частота вращения инструмента не должна быть максимально возможной. В противном случае существует риск снижения скорости резания. Ее повышение возможно с увеличением диаметра фрезы.
  4. Увеличение длины рабочей части фрезы, предпочтение большого количества зубьев понижают производительность и качество обработки.
  5. Ориентировочные значения скоростей для различных материалов:
  • алюминий - 200-400 м/мин;
  • бронза - 90-150 м/мин;
  • нержавеющая сталь - 50-100 м/мин;
  • пластмассы - 100-200 м/мин.

Лучше начинать со средней скоростью, а в процессе корректировать ее в меньшую или большую сторону.

Режим резания при фрезеровании важно определять не только математически или с помощью специальных таблиц. Для правильного выбора и установки оптимальных параметров для станка и нужного инструмента необходимо оперировать некоторыми особенностями и личным опытом.

Выбор режима резания играет основную роль при любой металлорежущей операции, и особенно при фрезеровании. От этого зависит производительность работ, возможность максимального использования ресурсов станка, стойкость инструмента и качество конечного результата. Для выбора режима резания разработаны специальные таблицы, но есть ряд общих понятий, которые необходимо знать любому фрезеровщику.

Особенности фрезерования

Процесс фрезерования является одним их наиболее сложных из всех видов металлообработки. Основной фактор – это прерывистый характер работы, когда каждый из зубьев инструмента входит в кратковременный контакт с обрабатываемой поверхностью. При этом каждый контакт сопровождается ударной нагрузкой. Дополнительные факторы сложности – более одной режущей поверхности и образование прерывистой стружки переменной толщины, что может стать серьёзным препятствием для работы.

Поэтому очень важен правильный подбор режима резания, что позволяет добиться максимальной производительности оборудования. Сюда входит правильный выбор подачи, скорости и силы реза, а также глубины удаляемого слоя что позволяет получить необходимую точность при минимальных затратах и износе инструмента.

Параметры режима резания

Основными характеристиками, которые регулируются в процессе фрезерования и являющиеся составляющими режима резания являются:

  • глубина реза – это толщина металла снимаемая за один проход. Выбирается с учетом припуска на обработку;
  • ширина реза – показатель ширины снимаемого слоя металла по направлению перпендикулярному направлению подачи;
  • подача инструмента – перемещение обрабатываемой поверхности относительно оси фрезы. В расчете режима используются такие показатели как подача на один зуб, в минуту и на один оборот. На величину подачи влияет прочность инструмента и характеристики оборудования.

Ширина и глубина

Данные параметры имеют важное значение для рационального выбора режима фрезерования. Глубина, как правило, устанавливается на максимально допустимое значение для уменьшения количества проходов. При повышенных требованиях к чистоте и точности обработки применяются черновой и чистовой проходы, соответственно, для съёма основной массы металла и калибровки поверхности. Количество черновых проходов может быть увеличено для повышения качества реза.

При выборе глубины также необходимо учесть припуск на обработку. Как правило, несколько проходов применяется при значении припуска более 5 мм. При последнем черновом проходе оставляют около 1 мм на чистовую обработку.

При подборе ширины необходимо учесть, что при одновременной обработке нескольких деталей учитывается общее значение. Выбирая данные значения необходимо учесть и состояние поверхности заготовки. При наличии следов литья, окалины или загрязнений необходимо увеличить глубину реза. В противном случае возможно скольжение зуба, дефекты поверхности, быстрый износ режущих кромок.

При выборе глубины реза существуют следующие типовые рекомендации:

  • Чистовая обработка – до 1 мм.
  • Черновая по чугуну и стали – от 5 до 7 мм.
  • Черновая для разных марок стали – от 3 до 5 мм.

Подача и скорость фрезы

Величина подачи зависит, в первую очередь от типа обработки – черновая или чистовая. При чистовом резе подача определяется требованиями к качеству поверхности. При черновом необходимо учесть несколько факторов:

  • жесткость заготовки, инструмента и станка;
  • материал заготовки и фрезы;
  • угол заточки фрез;
  • мощность привода станка.

Скорость обработки определяется по нормативам, в которых учитывается тип инструмента и материал заготовки. Данный параметр выбирается по стандартной таблице.

Необходимо учесть, что значения в таблице приведены для стандартной стойкости инструмента. Если фреза не соответствует стандартным параметрам, то необходимо учесть поправочный коэффициент который зависит от ширины инструмента (для торцовых фрез), свойств заготовки, угла фрезы и наличия окалины.

Идеально подобрать режим обработки практически невозможно, но есть ряд рекомендаций, которым желательно следовать:

  • Диаметр инструмента должен соответствовать глубине обработки. Это позволяет провести обработку в один проход, но для слишком мягких материалов есть риск снятия стружки большей толщины, чем необходимо.
  • По причине ударов и вибрации желательно начать с подачи порядка 0,15 мм на зуб и затем регулировать в большую или меньшую сторону.
  • Не желательно использовать максимальное количество оборотов, это может привести к падению скорости реза. Повысить частоту можно при увеличении диаметра инструмента.

Определение режима реза производится не только с помощью таблиц. Большую роль играет знание особенностей станка и личный опыт фрезеровщика.

Скорость резания v м/мин. У фрезерных и расточных станков окружная скорость рассчитывается для наиболее удаленных от оси точек режущих кромок инструмента. Окружная скорость определяется по формуле

где π = 3,14; D — наибольший диаметр обработки (наибольший диаметр фрезы), мм; n — число оборотов в минуту.

Выбор оптимального значения скорости резания производится по справочникам с помощью специальных нормативных таблиц в зависимости от свойств обрабатываемого материала, конструкции и материала инструмента после того, как уже выбрана глубина резания и величина подачи. Величина скорости резания влияет на износ инструмента. Чем выше скорость резания, тем больше износ. Если, например, скорость резания при фрезеровании увеличивается всего лишь на 10%, износ фрезы увеличивается на 25—60% и соответственно уменьшается стойкость фрезы.

Рис. 25. : h — величина износа

Под стойкостью понимается время в минутах, в течение которого инструмент может работать без переточки. Переточка должна быть произведена при достижении предельно допустимого износа. Износ заметен на глаз. Он наблюдается на задней грани инструмента в виде полоски разрушенного материала шириной h (рис. 25). Ширина изношенной фаски h обычно допускается для чистовых работ не более 0,2—0,5 мм, для грубых обдирочных работ — 0,4—0,6 мм, для твердосплавного инструмента—1—2 мм. Если допустить большой износ, то при переточке нужно много сошлифовать с инструмента материала, что неэкономично. Если перетачивать инструмент при малом износе, тогда чаще надо отдавать его на переточку, что тоже невыгодно.

Скорость резания выбирается такой, чтобы оптимальный износ наступал через определенное время и стойкость инструмента находилась в определенных пределах. Например, для цилиндрической фрезы диаметром 90— 120 мм стойкость при нормальной работе должна быть равна 180 мин. Для других типов инструментов стойкость выбирается иной.

Таблица 6 Значения скорости резания при точении и растачивании углеродистых сталей резцами из быстрорежущей стали

В табл. 6 приводятся данные для определения скорости резания при точении и растачивании конструкционных углеродистых сталей резцами из быстрорежущих сталей марок Р9 и Р18 при работе с охлаждением.

Стрелками показано нахождение значения скорости растачивания при глубине резания t = 3 мм и подаче s = 0,76 мм/об. Найденное табличное значение скорости v рез =33 мм/мин, следует умножить на поправочные коэффициенты. Например, при работе без охлаждения данное значение v рез нужно умножить на 0,8, если обрабатываемый материал представляет собой прокат с коркой — на 0,9, если поковка — на 0,8, а если прокат без корки, поправочный коэффициент равен 1,0.

Значения поправочных коэффициентов, учитывающих различные значения угла в плане режущего инструмента и его стойкость, приведены в табл. 7, 8.

Таблица 7

Таблица 8 Поправочный коэффициент для различных значений стойкости инструмента

В зависимости от прочности и твердости обрабатываемого материала коэффициент выбирается по табл. 9.

В нашем случае скорость резания оказалась равной 33 м/мин при условии, что у резца угол в плане φ=45°, стойкость резца выбрана равной 60 мин при обработке углеродистой стали с содержанием углерода C ≤ 0,6% при твердости около 220 НВ.

Таблица 9

Скорость резания зависит также от материала инструмента. В настоящее время широко применяются для инструмента быстрорежущие стали и твердые сплавы. Поскольку эти инструментальные материалы дорогие, из них делают лишь пластины. Пластины припаивают, либо приваривают к корпусу инструмента, изготовленного обычно из конструкционных сталей. Применяют также способы механического крепления твердосплавных пластин. Механическое крепление пластин выгодно потому, что при достижении предельного износа режущей кромки подвергается замене лишь пластина, а корпус инструмента сохраняется.

Для приближенных расчетов можно считать, что скорость резания при твердосплавном инструменте в 6—8 раз выше, чем при инструменте из быстрорежущей стали. Табличные данные для определения скорости резания при работе торцовыми фрезами даны в табл. 10.

Зададимся исходными данными: обрабатываемый материал — сталь марки 30ХГТ; глубина резания t=1 мм; подача на 1 зуб s z =0,1 мм; отношение диаметра фрезы к ширине обработки D/b ср =2; стойкость фрезы 100 мин.

Скорость резания при фрезеровании торцовыми фрезами v м/мин:

v=v табл * K 1 * K 2 * K 3 ,

где v табл — табличное значение скорости резания; K 1 — коэффициент, зависящий от отношения диаметра фрезы D к ширине обработки; K 2 — коэффициент, зависящий от материалов фрезы и обрабатываемой детали; К 3 — коэффициент, учитывающий стойкость фрезы, изготовленной из различных материалов.

Значения v табл и К 1 представлены в табл. 10, а коэффициентов К 2 и К 3 — в табл. 11 и 12.

Таблица 10 Значения K 1 , и скорости резания для торцового фрезерования в зависимости от материала фрезы, отношения диаметра фрезы к ширине обработки, глубины резания и подачи на зуб

По табл. 10 найдем скорости резания для материала инструмента: из быстрорежущей стали — 52 м/мин, из твердого сплава— 320 м/мин.

При соотношении диаметра фрезы D к ширине обработки b, равном 2, коэффициент K 1 = 1,1.

Из табл. 11 против марки стали обрабатываемой детали 30ХГТ найдем для быстрорежущей стали поправочный коэффициент 0,6, а для твердого сплава—0,8.

Из табл. 12 видно, что для торцовой фрезы при стойкости 100 мин как для быстрорежущей стали, так и для твердого сплава поправочный коэффициент К 3 равен 1,0.

Подставим найденные значения в формулу скорости резания и найдем требующиеся нам значения.

v быстрореж = 52 * 1,1 * 0,6 * 1,0 = 34,32 м/мин;

v тв.сплав = 320 * 1,1 * 0,8 * 1,0 = 281,6 м/мин;

Разделим полученные значения друг на друга и увидим, что применение фрезы, оснащенной твердым сплавом, позволяет увеличить скорость резания в сравнении с фрезой из быстрорежущей стали примерно в 8,2 раза.

По величинам силы резания и скорости резания определяется эффективная мощность резания, расходуемая на срезание стружки. Для определения мощности резания пользуются формулой

N рез = (P ок *v*0,736)/(60*75) кВт,

где P ок — окружная сила резания (она же сила резания P z), кгс; v— скорость резания, м/мин.

Таблица 11 Коэффициент К 2 , зависящий от материала инструмента и материала обрабатываемой детали

Таблица 12 Коэффициент К 3 для фрез из различных материалов при равной стойкости

Обычно в механизмах станка 15—25% мощности электродвигателя тратится на преодоление сил трения, а 75—85% расходуется на резание. Отношение мощности, затраченной на резание N рез, к мощности, потребляемой электродвигателем станка N э.д. , характеризует коэффициент полезного действия η:

η = N рез / N э.д

Если (выразить значения N рез и N э.д. через проценты, то получим значение коэффициента полезного действия станка. Например, если N рез =75% от N э.д. , а N э.д. = 100%, то η = 75% / 100% = 0,75

Требуемая общая мощность привода станка может быть определена по формуле N э.д. = (P z (кгс) * v(м/мин) * 0,736) / (60 * 75 * η) кВт.

Исходя из режимов резания, определяется мощность привода станка или при обработке деталей на станке проверяется соответствие выбранных режимов мощности установленного на станке электродвигателя.